If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x(x-5)-2(x+2)(x-2)=(x+4)(x+1)-16
We move all terms to the left:
3x(x-5)-2(x+2)(x-2)-((x+4)(x+1)-16)=0
We use the square of the difference formula
x^2+3x(x-5)-((x+4)(x+1)-16)+4=0
We multiply parentheses
x^2+3x^2-15x-((x+4)(x+1)-16)+4=0
We multiply parentheses ..
x^2+3x^2-((+x^2+x+4x+4)-16)-15x+4=0
We calculate terms in parentheses: -((+x^2+x+4x+4)-16), so:We add all the numbers together, and all the variables
(+x^2+x+4x+4)-16
We get rid of parentheses
x^2+x+4x+4-16
We add all the numbers together, and all the variables
x^2+5x-12
Back to the equation:
-(x^2+5x-12)
4x^2-15x-(x^2+5x-12)+4=0
We get rid of parentheses
4x^2-x^2-15x-5x+12+4=0
We add all the numbers together, and all the variables
3x^2-20x+16=0
a = 3; b = -20; c = +16;
Δ = b2-4ac
Δ = -202-4·3·16
Δ = 208
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{208}=\sqrt{16*13}=\sqrt{16}*\sqrt{13}=4\sqrt{13}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-4\sqrt{13}}{2*3}=\frac{20-4\sqrt{13}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+4\sqrt{13}}{2*3}=\frac{20+4\sqrt{13}}{6} $
| 10+2x9=28 | | N+n+20+3n-15=180 | | 3(2b+4)=15 | | x÷4-8x=0 | | 16,5x+190x=47985 | | 30/50=40/x | | 6x-7=9x+8 | | (x-7)/(2x+3)=-1 | | –x=–6–2–2x | | 0.5x+1=0.4x+2 | | –9x–6+4=4+2x–8x | | –10–4x+2=x–3–4x | | 9x-40=-13 | | –2x–5=6–x–2x | | 2x–5+1+x=+x–6 | | 5x–4=3x–2 | | 8x/3=168 | | x/38=168 | | x+2/38=168 | | 4n+185=11n-11 | | LxW=92 | | 5x-12=8x+5 | | 2y=15-6 | | 40x+39(1.5x)=1071 | | -40-7y=2 | | 10x-7=7x+20 | | 9x-6(x-2)=12-2(x-3)-3 | | 1/2x+2/3=3/5-2/7x | | 7-y/3=1-y | | 2(5-2x)=3(x-1)-7x+13 | | 17-2x=31+3 | | 4(w+3)=12 |