3x(x-4)=40

Simple and best practice solution for 3x(x-4)=40 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x(x-4)=40 equation:


Simplifying
3x(x + -4) = 40

Reorder the terms:
3x(-4 + x) = 40
(-4 * 3x + x * 3x) = 40
(-12x + 3x2) = 40

Solving
-12x + 3x2 = 40

Solving for variable 'x'.

Reorder the terms:
-40 + -12x + 3x2 = 40 + -40

Combine like terms: 40 + -40 = 0
-40 + -12x + 3x2 = 0

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
-13.33333333 + -4x + x2 = 0

Move the constant term to the right:

Add '13.33333333' to each side of the equation.
-13.33333333 + -4x + 13.33333333 + x2 = 0 + 13.33333333

Reorder the terms:
-13.33333333 + 13.33333333 + -4x + x2 = 0 + 13.33333333

Combine like terms: -13.33333333 + 13.33333333 = 0.00000000
0.00000000 + -4x + x2 = 0 + 13.33333333
-4x + x2 = 0 + 13.33333333

Combine like terms: 0 + 13.33333333 = 13.33333333
-4x + x2 = 13.33333333

The x term is -4x.  Take half its coefficient (-2).
Square it (4) and add it to both sides.

Add '4' to each side of the equation.
-4x + 4 + x2 = 13.33333333 + 4

Reorder the terms:
4 + -4x + x2 = 13.33333333 + 4

Combine like terms: 13.33333333 + 4 = 17.33333333
4 + -4x + x2 = 17.33333333

Factor a perfect square on the left side:
(x + -2)(x + -2) = 17.33333333

Calculate the square root of the right side: 4.163331999

Break this problem into two subproblems by setting 
(x + -2) equal to 4.163331999 and -4.163331999.

Subproblem 1

x + -2 = 4.163331999 Simplifying x + -2 = 4.163331999 Reorder the terms: -2 + x = 4.163331999 Solving -2 + x = 4.163331999 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '2' to each side of the equation. -2 + 2 + x = 4.163331999 + 2 Combine like terms: -2 + 2 = 0 0 + x = 4.163331999 + 2 x = 4.163331999 + 2 Combine like terms: 4.163331999 + 2 = 6.163331999 x = 6.163331999 Simplifying x = 6.163331999

Subproblem 2

x + -2 = -4.163331999 Simplifying x + -2 = -4.163331999 Reorder the terms: -2 + x = -4.163331999 Solving -2 + x = -4.163331999 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '2' to each side of the equation. -2 + 2 + x = -4.163331999 + 2 Combine like terms: -2 + 2 = 0 0 + x = -4.163331999 + 2 x = -4.163331999 + 2 Combine like terms: -4.163331999 + 2 = -2.163331999 x = -2.163331999 Simplifying x = -2.163331999

Solution

The solution to the problem is based on the solutions from the subproblems. x = {6.163331999, -2.163331999}

See similar equations:

| 11x+2y=8.2 | | 8*(x+4)-14=80 | | x+6=4(4x-6) | | m-y=248 | | -4=b/9 | | P/4=8 | | 4(6+3)=4(6)+4(3) | | 3x^2/14x^2-12 | | 1.5=3.3-(4r-1) | | -5-3=32 | | 30=13y-35 | | 2x-1=3+4x | | 0.5+0.25x=3 | | Logx+log(6x+1)=0 | | -2(6.3)-2/3= | | P/9=5 | | F(-2)=4x^2-2 | | -6=v/5 | | 10=n/6 | | 5(2x-5)=5 | | 2-(21)-2= | | x-2=15x+8+9x | | -2(21)-2/3 | | -368sin(184*0.003)sin(184*0.003)+368cos(184*0.003)cos(184*0.003)=x | | (-368sin(184*0.003)sin(184*0.003))+(368cos(184*0.003)cos(184*0.003))=x | | -2(4p-9)=-2p | | -2(4p-9)=-2 | | y=8*(10-56) | | 33+x=13+5x | | -8(t+9)+9(t+1)=-63 | | (-368sin(184t)sin(184t))+(368cos(184t)cos(184t))=x | | 16-w=20 |

Equations solver categories