3x(x-4)-2(x-5)=6x-2(x-5)

Simple and best practice solution for 3x(x-4)-2(x-5)=6x-2(x-5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x(x-4)-2(x-5)=6x-2(x-5) equation:



3x(x-4)-2(x-5)=6x-2(x-5)
We move all terms to the left:
3x(x-4)-2(x-5)-(6x-2(x-5))=0
We multiply parentheses
3x^2-12x-2x-(6x-2(x-5))+10=0
We calculate terms in parentheses: -(6x-2(x-5)), so:
6x-2(x-5)
We multiply parentheses
6x-2x+10
We add all the numbers together, and all the variables
4x+10
Back to the equation:
-(4x+10)
We add all the numbers together, and all the variables
3x^2-14x-(4x+10)+10=0
We get rid of parentheses
3x^2-14x-4x-10+10=0
We add all the numbers together, and all the variables
3x^2-18x=0
a = 3; b = -18; c = 0;
Δ = b2-4ac
Δ = -182-4·3·0
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{324}=18$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-18}{2*3}=\frac{0}{6} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+18}{2*3}=\frac{36}{6} =6 $

See similar equations:

| 6+a/7=8 | | 3x-1=-2x+20 | | -6x+9=6x-51 | | 5(x-2)=303 | | z^2=-4z-12 | | 2(x+0.6)+5(1.02-x=0 | | -3.6x=5.4 | | x2−8x=0 | | 4/5x-3=16 | | y^2=-2y-20 | | -6(x-9)=36 | | 8(4-10=12x | | (3x-1)=(5x-4) | | (2x+5)-(3x+2)=3(x+8)+x | | 28-x=-45 | | 8x+4=2x-6 | | -4m+9=-7 | | 133=7(-6n+1) | | X+3x5=37 | | 8(7-y=-24) | | 8/9n+1/2=6/3 | | -9=-8-x | | (a-7)=14-4a | | 26=n-(-26) | | -181/4=2.5x | | 50=1.75x+7 | | 45x=100=437.50 | | .08=(1000-x)/x | | (1)/(3)(d+3)=5 | | 3x-18=7x+28 | | 37-3(2-n)=5(3-4n)-7 | | 4v1v5(v+1)-v=5(v-1)+9 |

Equations solver categories