3x(x-2)+4=2(x+3)

Simple and best practice solution for 3x(x-2)+4=2(x+3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x(x-2)+4=2(x+3) equation:



3x(x-2)+4=2(x+3)
We move all terms to the left:
3x(x-2)+4-(2(x+3))=0
We multiply parentheses
3x^2-6x-(2(x+3))+4=0
We calculate terms in parentheses: -(2(x+3)), so:
2(x+3)
We multiply parentheses
2x+6
Back to the equation:
-(2x+6)
We get rid of parentheses
3x^2-6x-2x-6+4=0
We add all the numbers together, and all the variables
3x^2-8x-2=0
a = 3; b = -8; c = -2;
Δ = b2-4ac
Δ = -82-4·3·(-2)
Δ = 88
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{88}=\sqrt{4*22}=\sqrt{4}*\sqrt{22}=2\sqrt{22}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-2\sqrt{22}}{2*3}=\frac{8-2\sqrt{22}}{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+2\sqrt{22}}{2*3}=\frac{8+2\sqrt{22}}{6} $

See similar equations:

| 4x+8=x=4 | | 3(4x+9)=-10+25 | | -4+2a+1=9 | | 9.6-x=6.2 | | 12=r-5r | | |-4+2a|+1=9 | | 6k-9+11k=20k+3 | | -21=7-8x-4 | | 11x-103=95+17x | | -9+13g=12g | | (-4.8y)=28.8 | | 57x-57=19(3x-3) | | j/17=31 | | 42.49=5s+4.74 | | (3/7x)=33 | | =360.x=100 | | 1+3p+3=-2 | | {-12+x}{11}=-3 | | 24+5x=44 | | 10k-4=2k-2 | | 3(x+1)=18-36 | | 1000-n=28 | | -11=-y+6 | | 1/4x-4=-1/4x+4 | | -14a+21a=16.2 | | p/31=6 | | 8+5=2x+4 | | P-5-4p=-14 | | 23+6x=29
 | | 1.5x-9=7 | | 2(3x+5)=10x+7-4x+3 | | 54+x+x+x+x=180 |

Equations solver categories