3x(x-10)=180

Simple and best practice solution for 3x(x-10)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x(x-10)=180 equation:



3x(x-10)=180
We move all terms to the left:
3x(x-10)-(180)=0
We multiply parentheses
3x^2-30x-180=0
a = 3; b = -30; c = -180;
Δ = b2-4ac
Δ = -302-4·3·(-180)
Δ = 3060
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3060}=\sqrt{36*85}=\sqrt{36}*\sqrt{85}=6\sqrt{85}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-6\sqrt{85}}{2*3}=\frac{30-6\sqrt{85}}{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+6\sqrt{85}}{2*3}=\frac{30+6\sqrt{85}}{6} $

See similar equations:

| -3x-5-7(x+1)=-(-2x+7) | | x-50=49 | | 4(b+20)=40 | | 3(t+4)=25.25 | | 3(j+1)= | | 9=5u+4u | | 7z−3=7z−3 | | n^2=-40 | | -x+2=2x+4 | | −5(−x−1)−1=49−4x | | (2t-4)°(5t+2)°=90 | | 2(3x+4)=7x-16+x | | 0.2(x+14)=12 | | 4z/9+9=-1 | | 2(y+5)-4y=-4 | | 10=7(w-2)+5w | | 7x+11=2(x+13) | | 6(u+5)-4u=24 | | 4x+4=6x+15 | | x/7=20/4 | | 22-8=2x+9 | | 8j−20=20 | | 3(c−80)=24 | | 123(x−5)=12.​​x=x= | | 7r+27=76 | | 5.1=17.6-5w | | -2(3x-2)+3x+3=34 | | K+6=4k-2 | | 2m/3=m+3 | | k–10+ 46=51 | | 25+6b=85 | | 3x+3=7x-27 |

Equations solver categories