3x(x+x)=675

Simple and best practice solution for 3x(x+x)=675 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x(x+x)=675 equation:



3x(x+x)=675
We move all terms to the left:
3x(x+x)-(675)=0
We add all the numbers together, and all the variables
3x(+2x)-675=0
We multiply parentheses
6x^2-675=0
a = 6; b = 0; c = -675;
Δ = b2-4ac
Δ = 02-4·6·(-675)
Δ = 16200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{16200}=\sqrt{8100*2}=\sqrt{8100}*\sqrt{2}=90\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-90\sqrt{2}}{2*6}=\frac{0-90\sqrt{2}}{12} =-\frac{90\sqrt{2}}{12} =-\frac{15\sqrt{2}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+90\sqrt{2}}{2*6}=\frac{0+90\sqrt{2}}{12} =\frac{90\sqrt{2}}{12} =\frac{15\sqrt{2}}{2} $

See similar equations:

| 2-2x3=-4 | | w-4w+2w=0,w(0)=0,w(0)=3 | | 8=d+3/4 | | 1/7(x+4)=7 | | (x-4)+1/x+1=1/2 | | 2.6(3.1r-10.9)=12.9 | | 36.4=x+1.60x | | 30x+12=12(x+3) | | 30+x+12=12(x+3) | | 67=-7s+6 | | -2k-5=-15 | | (x+9)2=−64 | | -2x²+16x+150=160 | | (x+2)-(x+3)=50 | | 4-10x=-14.7 | | 4-10x=14.7 | | 10-4t-5t^2=0 | | 25+a=2a | | 4x=3(x+2)÷5 | | (4x-1)÷3=2x+4 | | 4x-1÷3=2x+4 | | • 2+7x=56+x | | 72/360=8x | | 8x=72/360 | | 9-2d÷4=1-d | | 78+56-e=105 | | 966996696969966986x67585484568=9 | | x+2.7x=100 | | 80+d-115=98 | | 2x=3x+108 | | 12-4x=20-5x | | 4n+14=60 |

Equations solver categories