3x(x+9)=2(4x+31)

Simple and best practice solution for 3x(x+9)=2(4x+31) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x(x+9)=2(4x+31) equation:


Simplifying
3x(x + 9) = 2(4x + 31)

Reorder the terms:
3x(9 + x) = 2(4x + 31)
(9 * 3x + x * 3x) = 2(4x + 31)
(27x + 3x2) = 2(4x + 31)

Reorder the terms:
27x + 3x2 = 2(31 + 4x)
27x + 3x2 = (31 * 2 + 4x * 2)
27x + 3x2 = (62 + 8x)

Solving
27x + 3x2 = 62 + 8x

Solving for variable 'x'.

Reorder the terms:
-62 + 27x + -8x + 3x2 = 62 + 8x + -62 + -8x

Combine like terms: 27x + -8x = 19x
-62 + 19x + 3x2 = 62 + 8x + -62 + -8x

Reorder the terms:
-62 + 19x + 3x2 = 62 + -62 + 8x + -8x

Combine like terms: 62 + -62 = 0
-62 + 19x + 3x2 = 0 + 8x + -8x
-62 + 19x + 3x2 = 8x + -8x

Combine like terms: 8x + -8x = 0
-62 + 19x + 3x2 = 0

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
-20.66666667 + 6.333333333x + x2 = 0

Move the constant term to the right:

Add '20.66666667' to each side of the equation.
-20.66666667 + 6.333333333x + 20.66666667 + x2 = 0 + 20.66666667

Reorder the terms:
-20.66666667 + 20.66666667 + 6.333333333x + x2 = 0 + 20.66666667

Combine like terms: -20.66666667 + 20.66666667 = 0.00000000
0.00000000 + 6.333333333x + x2 = 0 + 20.66666667
6.333333333x + x2 = 0 + 20.66666667

Combine like terms: 0 + 20.66666667 = 20.66666667
6.333333333x + x2 = 20.66666667

The x term is 6.333333333x.  Take half its coefficient (3.166666667).
Square it (10.02777778) and add it to both sides.

Add '10.02777778' to each side of the equation.
6.333333333x + 10.02777778 + x2 = 20.66666667 + 10.02777778

Reorder the terms:
10.02777778 + 6.333333333x + x2 = 20.66666667 + 10.02777778

Combine like terms: 20.66666667 + 10.02777778 = 30.69444445
10.02777778 + 6.333333333x + x2 = 30.69444445

Factor a perfect square on the left side:
(x + 3.166666667)(x + 3.166666667) = 30.69444445

Calculate the square root of the right side: 5.540256713

Break this problem into two subproblems by setting 
(x + 3.166666667) equal to 5.540256713 and -5.540256713.

Subproblem 1

x + 3.166666667 = 5.540256713 Simplifying x + 3.166666667 = 5.540256713 Reorder the terms: 3.166666667 + x = 5.540256713 Solving 3.166666667 + x = 5.540256713 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-3.166666667' to each side of the equation. 3.166666667 + -3.166666667 + x = 5.540256713 + -3.166666667 Combine like terms: 3.166666667 + -3.166666667 = 0.000000000 0.000000000 + x = 5.540256713 + -3.166666667 x = 5.540256713 + -3.166666667 Combine like terms: 5.540256713 + -3.166666667 = 2.373590046 x = 2.373590046 Simplifying x = 2.373590046

Subproblem 2

x + 3.166666667 = -5.540256713 Simplifying x + 3.166666667 = -5.540256713 Reorder the terms: 3.166666667 + x = -5.540256713 Solving 3.166666667 + x = -5.540256713 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-3.166666667' to each side of the equation. 3.166666667 + -3.166666667 + x = -5.540256713 + -3.166666667 Combine like terms: 3.166666667 + -3.166666667 = 0.000000000 0.000000000 + x = -5.540256713 + -3.166666667 x = -5.540256713 + -3.166666667 Combine like terms: -5.540256713 + -3.166666667 = -8.70692338 x = -8.70692338 Simplifying x = -8.70692338

Solution

The solution to the problem is based on the solutions from the subproblems. x = {2.373590046, -8.70692338}

See similar equations:

| 5-5=-x^2 | | 5x^2+16-3=0 | | -19=0.5x | | 1/2x5x5x5 | | -1(16k^2-8k-24)=0 | | -5(3x-9)=2(x-2)-53 | | 6n-4=12n+8 | | 6-2x=7x+33 | | Y-1=1.08x-0.8 | | 5x^2+16-7=-10 | | ab+b-a=o | | -x^2+7=2x+4 | | 1/2(x-12)=12+5x | | 12x-4=3x+2 | | d+-4=0 | | 5-1/5 | | 13+3x=2(-x+5)-12 | | 3.2*a=3.46 | | -x+7=-x^2-2x-1 | | 4x^2-5x-4=x-6 | | -8+5x=-2x-8 | | 42oz=gal | | 8/10=n/100 | | 9y^2-4y^2=0 | | x+8=3x-12 | | x+10=10+7x | | -3x^2=6x+3 | | (2x-10)/9=4/10 | | 5x^2+11=41x+3 | | 10x-22+x=180 | | x-(2x+1)=2-(3+-1) | | 3x^2+2x=11 |

Equations solver categories