3x(x+5)(2x-7)(3x+4)(x-3)=0

Simple and best practice solution for 3x(x+5)(2x-7)(3x+4)(x-3)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x(x+5)(2x-7)(3x+4)(x-3)=0 equation:


Simplifying
3x(x + 5)(2x + -7)(3x + 4)(x + -3) = 0

Reorder the terms:
3x(5 + x)(2x + -7)(3x + 4)(x + -3) = 0

Reorder the terms:
3x(5 + x)(-7 + 2x)(3x + 4)(x + -3) = 0

Reorder the terms:
3x(5 + x)(-7 + 2x)(4 + 3x)(x + -3) = 0

Reorder the terms:
3x(5 + x)(-7 + 2x)(4 + 3x)(-3 + x) = 0

Multiply (5 + x) * (-7 + 2x)
3x(5(-7 + 2x) + x(-7 + 2x))(4 + 3x)(-3 + x) = 0
3x((-7 * 5 + 2x * 5) + x(-7 + 2x))(4 + 3x)(-3 + x) = 0
3x((-35 + 10x) + x(-7 + 2x))(4 + 3x)(-3 + x) = 0
3x(-35 + 10x + (-7 * x + 2x * x))(4 + 3x)(-3 + x) = 0
3x(-35 + 10x + (-7x + 2x2))(4 + 3x)(-3 + x) = 0

Combine like terms: 10x + -7x = 3x
3x(-35 + 3x + 2x2)(4 + 3x)(-3 + x) = 0

Multiply (-35 + 3x + 2x2) * (4 + 3x)
3x(-35(4 + 3x) + 3x * (4 + 3x) + 2x2 * (4 + 3x))(-3 + x) = 0
3x((4 * -35 + 3x * -35) + 3x * (4 + 3x) + 2x2 * (4 + 3x))(-3 + x) = 0
3x((-140 + -105x) + 3x * (4 + 3x) + 2x2 * (4 + 3x))(-3 + x) = 0
3x(-140 + -105x + (4 * 3x + 3x * 3x) + 2x2 * (4 + 3x))(-3 + x) = 0
3x(-140 + -105x + (12x + 9x2) + 2x2 * (4 + 3x))(-3 + x) = 0
3x(-140 + -105x + 12x + 9x2 + (4 * 2x2 + 3x * 2x2))(-3 + x) = 0
3x(-140 + -105x + 12x + 9x2 + (8x2 + 6x3))(-3 + x) = 0

Combine like terms: -105x + 12x = -93x
3x(-140 + -93x + 9x2 + 8x2 + 6x3)(-3 + x) = 0

Combine like terms: 9x2 + 8x2 = 17x2
3x(-140 + -93x + 17x2 + 6x3)(-3 + x) = 0

Multiply (-140 + -93x + 17x2 + 6x3) * (-3 + x)
3x(-140(-3 + x) + -93x * (-3 + x) + 17x2 * (-3 + x) + 6x3 * (-3 + x)) = 0
3x((-3 * -140 + x * -140) + -93x * (-3 + x) + 17x2 * (-3 + x) + 6x3 * (-3 + x)) = 0
3x((420 + -140x) + -93x * (-3 + x) + 17x2 * (-3 + x) + 6x3 * (-3 + x)) = 0
3x(420 + -140x + (-3 * -93x + x * -93x) + 17x2 * (-3 + x) + 6x3 * (-3 + x)) = 0
3x(420 + -140x + (279x + -93x2) + 17x2 * (-3 + x) + 6x3 * (-3 + x)) = 0
3x(420 + -140x + 279x + -93x2 + (-3 * 17x2 + x * 17x2) + 6x3 * (-3 + x)) = 0
3x(420 + -140x + 279x + -93x2 + (-51x2 + 17x3) + 6x3 * (-3 + x)) = 0
3x(420 + -140x + 279x + -93x2 + -51x2 + 17x3 + (-3 * 6x3 + x * 6x3)) = 0
3x(420 + -140x + 279x + -93x2 + -51x2 + 17x3 + (-18x3 + 6x4)) = 0

Combine like terms: -140x + 279x = 139x
3x(420 + 139x + -93x2 + -51x2 + 17x3 + -18x3 + 6x4) = 0

Combine like terms: -93x2 + -51x2 = -144x2
3x(420 + 139x + -144x2 + 17x3 + -18x3 + 6x4) = 0

Combine like terms: 17x3 + -18x3 = -1x3
3x(420 + 139x + -144x2 + -1x3 + 6x4) = 0
(420 * 3x + 139x * 3x + -144x2 * 3x + -1x3 * 3x + 6x4 * 3x) = 0
(1260x + 417x2 + -432x3 + -3x4 + 18x5) = 0

Solving
1260x + 417x2 + -432x3 + -3x4 + 18x5 = 0

Solving for variable 'x'.

Factor out the Greatest Common Factor (GCF), '3x'.
3x(420 + 139x + -144x2 + -1x3 + 6x4) = 0

Ignore the factor 3.

Subproblem 1

Set the factor 'x' equal to zero and attempt to solve: Simplifying x = 0 Solving x = 0 Move all terms containing x to the left, all other terms to the right. Simplifying x = 0

Subproblem 2

Set the factor '(420 + 139x + -144x2 + -1x3 + 6x4)' equal to zero and attempt to solve: Simplifying 420 + 139x + -144x2 + -1x3 + 6x4 = 0 Solving 420 + 139x + -144x2 + -1x3 + 6x4 = 0 The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined.

Solution

x = {0}

See similar equations:

| 2/-7/9 | | 6.9x-2.4=18.3 | | 16x-9p-8x= | | 5x+34=4-2x | | -2(t-8)-(t+4)=2 | | 16t+16u(3)+8=-4t-2u-6 | | 3a^2-78a-12=0 | | (10+2x)(5+2x)=84 | | 8x+14y+38=14y+12x+2 | | 2(X-2)/5=8 | | 1.3=-log(x) | | 0.6x^2=6x^2-7.1 | | 15x(x-4)=0 | | 6=3/8r | | 4(5x+9)=2x+3 | | a-10=50 | | 50a=10 | | 4x-(8x+2)=4-4x | | 9y=76.5 | | 4.5x+1.2-3.6(x)=-0.6 | | y=3(-6/5)-4 | | log71/9 | | x+102.69=299.34 | | x-23=26 | | 6v/11=5/8 | | 24x-6y+6=0 | | 10x^2=8 | | 5c/8=4/3 | | X-19-3x=-21 | | x^3+3x^3+2x=990 | | 5+5Ln(x)=6 | | 5x-36=7x+4 |

Equations solver categories