If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x(x+42)=180
We move all terms to the left:
3x(x+42)-(180)=0
We multiply parentheses
3x^2+126x-180=0
a = 3; b = 126; c = -180;
Δ = b2-4ac
Δ = 1262-4·3·(-180)
Δ = 18036
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{18036}=\sqrt{36*501}=\sqrt{36}*\sqrt{501}=6\sqrt{501}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(126)-6\sqrt{501}}{2*3}=\frac{-126-6\sqrt{501}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(126)+6\sqrt{501}}{2*3}=\frac{-126+6\sqrt{501}}{6} $
| x/5-3x/2=26 | | 8+2x=-8(6x-1) | | -3-17r=14 | | 6m+3(m+2)=6+9m | | 17+7x=5(3x+5) | | .5x+10=0.25x+54 | | (m+3)-2(m+6)=20 | | 4(m+3)-2(m+6)=20 | | 9x^2+31+20=0 | | 135+9x=166+4x | | 11/3x-5+14/3x=1/3 | | 6(x-3)=-2x=38 | | x+9=4x-33 | | 18m+18m-19m-16m=202 | | 1.5x+10=0.25x+54 | | 5x+45+3x-25+2x-5=180 | | |10x-4|=54 | | 5-4x-3=-7 | | |2x+4|=3x | | 50s-20=57s-62 | | 5y-16+20+3y=180 | | 1/3(24p-66)=3p+45 | | 114+(7x-11)=180 | | -4(8-x)=16 | | 5/3r=10 | | 7h-(6-3h)=4h=24 | | (x+5)(2x–3)= | | 2(x-5)-3x=19 | | 5x-3+x=-1+2x+4x | | 5x-3+x=-12x+4x | | 2.5/x=9.8 | | (2x+1)^2=20 |