If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x(x+2)+4(3x-5)=0
We multiply parentheses
3x^2+6x+12x-20=0
We add all the numbers together, and all the variables
3x^2+18x-20=0
a = 3; b = 18; c = -20;
Δ = b2-4ac
Δ = 182-4·3·(-20)
Δ = 564
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{564}=\sqrt{4*141}=\sqrt{4}*\sqrt{141}=2\sqrt{141}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-2\sqrt{141}}{2*3}=\frac{-18-2\sqrt{141}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+2\sqrt{141}}{2*3}=\frac{-18+2\sqrt{141}}{6} $
| 3(2x+8)=8x-10 | | 16=16-8s | | -10(s+4)=-98 | | 165=5(5u-2 | | 7k-5=-+9 | | 3x+2/5=12 | | 165=(5u-2) | | 40+30n=220 | | 2x+(x-6)/(2)=0 | | 3x+138=3x+24 | | -8s=0 | | 2x+10+4x+3=145 | | 100-5x=5x | | m^2=8-7m | | 9+(-9.8)t=0 | | 2(6w+5)=22 | | 4x-9=3x=5 | | 7(3s+2)=224 | | 3/4x-18=1/2x+5 | | 2(6w+5)=12 | | 55+40x=190 | | 3(4b-2)=-64 | | 15x+12=3x+21 | | 3/5x=18000 | | 2y2y-1=y+2y+1 | | (x+2)/x=4/3 | | 6(x-9)=3(x+7) | | x-18=73 | | 4-3(x+4)=10 | | 4f/3=2f+2/2 | | 8^2x=2 | | (10-x)/x=18/12= |