If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x(5x-20)+(x+20)=180
We move all terms to the left:
3x(5x-20)+(x+20)-(180)=0
We multiply parentheses
15x^2-60x+(x+20)-180=0
We get rid of parentheses
15x^2-60x+x+20-180=0
We add all the numbers together, and all the variables
15x^2-59x-160=0
a = 15; b = -59; c = -160;
Δ = b2-4ac
Δ = -592-4·15·(-160)
Δ = 13081
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-59)-\sqrt{13081}}{2*15}=\frac{59-\sqrt{13081}}{30} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-59)+\sqrt{13081}}{2*15}=\frac{59+\sqrt{13081}}{30} $
| m-16=3m+18+m | | 20-2b=-6b | | 6(n^2+7n+6)=n^2-1 | | (1-3)^x=14 | | 8.4y-6.8=-32y+16.4 | | 12.9x-4.7x=74.5 | | (x/3-4=x/5)15 | | Y=5y+76 | | 6(20-x)=1/2(6x+6) | | 2x²-10x-119=0 | | 13w+5=14+16w | | -(7x+3)-(-6x-5)=0 | | 10x^2+x=120 | | 6/n-9=2/8 | | x2+5=3x+15 | | -5j—15=-10 | | √(2x-7)=9 | | -7n+4=-6n-16 | | 16t+6+18=4+20t | | 2310=660x | | 3(2y-3)=4(6y+7) | | -7n+4=-6n-12 | | -6(6+4v)+2=106 | | 2g-20=g | | -55=1/2h(10+1) | | 11y+13=23 | | 15q-14q-1=15 | | -14+s=18-s | | 6(x+8)=-20 | | 6n^2-9n-6=0 | | 6x-10=6x=12 | | 4c+9c+-14c=18 |