3x(5x+20x)=56

Simple and best practice solution for 3x(5x+20x)=56 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x(5x+20x)=56 equation:



3x(5x+20x)=56
We move all terms to the left:
3x(5x+20x)-(56)=0
We add all the numbers together, and all the variables
3x(+25x)-56=0
We multiply parentheses
75x^2-56=0
a = 75; b = 0; c = -56;
Δ = b2-4ac
Δ = 02-4·75·(-56)
Δ = 16800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{16800}=\sqrt{400*42}=\sqrt{400}*\sqrt{42}=20\sqrt{42}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20\sqrt{42}}{2*75}=\frac{0-20\sqrt{42}}{150} =-\frac{20\sqrt{42}}{150} =-\frac{2\sqrt{42}}{15} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20\sqrt{42}}{2*75}=\frac{0+20\sqrt{42}}{150} =\frac{20\sqrt{42}}{150} =\frac{2\sqrt{42}}{15} $

See similar equations:

| 40=10K^0,5x4K^0,5 | | t+4/7=-5/7 | | t-8/5=-1/5 | | X+70=6x-80 | | t+1/5=-9/5 | | (2y-7)⋅13=251-12y | | 10+4y=-2 | | t-3/7=-4/7 | | 4x+1=8x+6 | | 25=5/9×(f-32) | | 8^3a=16^a+3 | | 2m+18-4m=-12 | | (x−1)2=3 | | (2y-7)×13=251-12y | | 7m–2=5m+6 | | 2.77c+3.1=0.77-2.7c | | 5y^2-20y+25=10 | | 16^2n+1=4^n-5 | | 4(3a-3)=-2a+14 | | 1/9(b+9)=5/8 | | b+8-16=7 | | 12x+10=6x+106 | | -4(a-8)=5-3(-5-2a) | | 4a-2=2a+18 | | 2×(5x-3)-8×(2+3x)=-14 | | -4(a-8)=5-3(5-2a) | | x²-√5x-19=0 | | 27^2b+1=243 | | |3x11|=7 | | 10a=88 | | x-x(0.4)=24 | | –k=–6−2k |

Equations solver categories