If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x(4x+40)=180
We move all terms to the left:
3x(4x+40)-(180)=0
We multiply parentheses
12x^2+120x-180=0
a = 12; b = 120; c = -180;
Δ = b2-4ac
Δ = 1202-4·12·(-180)
Δ = 23040
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{23040}=\sqrt{2304*10}=\sqrt{2304}*\sqrt{10}=48\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(120)-48\sqrt{10}}{2*12}=\frac{-120-48\sqrt{10}}{24} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(120)+48\sqrt{10}}{2*12}=\frac{-120+48\sqrt{10}}{24} $
| 18/15=x/20 | | -8(2-7n)=-16+n | | 10x^2+55x+150=0 | | -(7r-7)=-38+8r | | 4=6x-3-3x | | 2n+28=2(6n-6) | | -3/4x=-21/28 | | 7+x/4=10 | | 4y+785=13 | | j/4-4=2 | | 5w+22=7(w+6) | | tF(t)=6+12t | | 8+-10n=78 | | (x-7)*(x-7)=36 | | -x-6(1+3x)=127 | | 17=3.6z-4.6 | | tW(t)=80+5.4t | | 19+4y=75 | | -7(6-8p)=406 | | -8x=35=11 | | A²+b²=16 | | -68=-25+-y | | 15^2r-16r=16 | | -3x=50=11 | | 15^r2-16r=16 | | 2-(1-6x)=15 | | 2(1-6x)=15 | | -3.2+y/4=-9.6 | | 32x+6x=13x+80 | | (4x-2)(x+1)=0 | | -7(1+3a)=112 | | -1z+-18=-18 |