If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x(2x+50)=120
We move all terms to the left:
3x(2x+50)-(120)=0
We multiply parentheses
6x^2+150x-120=0
a = 6; b = 150; c = -120;
Δ = b2-4ac
Δ = 1502-4·6·(-120)
Δ = 25380
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{25380}=\sqrt{36*705}=\sqrt{36}*\sqrt{705}=6\sqrt{705}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(150)-6\sqrt{705}}{2*6}=\frac{-150-6\sqrt{705}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(150)+6\sqrt{705}}{2*6}=\frac{-150+6\sqrt{705}}{12} $
| 6x=15x-24 | | -4n+9=n-21 | | 2-x+3-x+x+8=2-x | | 9(8-x)=-63 | | x/3-3x/4=x/8 | | 8-7g=-9-10-4g | | 13=2s-7 | | a-25=140 | | -1(2x-18)=7x | | 64x=-56+71x | | 5+4x=4x+4 | | 8−7g=–9−10−4g | | 6z+12=-48 | | 7x+60=410 | | x+14=73 | | -28=-4(6+t) | | -2-2t=6-3t | | 2(5-1x)=2-4x | | 2=q+8/6 | | -2z-12=42 | | 3x=95 | | -6+4u=2u | | 12=r5 | | 13+x=1+-2x+-4x | | -6+4u=-8 | | 7/b=5/9 | | 13=x=4x+-2x+1 | | 0=13808(x^-2)-0.04x-55 | | 23−23x= 6(−4x−1)+9x | | R+31=-2+(6r+4) | | 182/65=21/x | | 3/8-3-4=o |