If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x(2x+10)=90
We move all terms to the left:
3x(2x+10)-(90)=0
We multiply parentheses
6x^2+30x-90=0
a = 6; b = 30; c = -90;
Δ = b2-4ac
Δ = 302-4·6·(-90)
Δ = 3060
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3060}=\sqrt{36*85}=\sqrt{36}*\sqrt{85}=6\sqrt{85}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-6\sqrt{85}}{2*6}=\frac{-30-6\sqrt{85}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+6\sqrt{85}}{2*6}=\frac{-30+6\sqrt{85}}{12} $
| -6(w+2)-w-7=-7(w+4)+9 | | 3+p=8* | | 2x-5/7=5x/2 | | 2x=2.5=8.5 | | 56y+1=−12y+34 | | -4x-3+6=5 | | 23(2x+30)=205 | | 6(x+20)=100 | | -6x+18=7=(4x+9) | | 16-x=5x | | +4y=-10 | | 23+(2x+30)=205 | | y=1/2(2)+4 | | f=180°–50°–° | | 8(-7-8x)-7x=-198 | | x*0.5^(60/1.5)=1 | | (W-x4/9)(-2/3)=-4/5 | | 76y-72=y-(-65) | | X+8+5x=180 | | 24+21-2y=21 | | 3t+9=-t+17 | | 8x+8=2x+2 | | 6y+4y=9y+6y | | 7b=1-7=15 | | 2=30(a+24) | | n/5+3=12 | | x+1/4x=3 | | 4(1+4x)=84 | | 4/5x-9=3x+3-7x | | -4+6(8b-2)=224 | | 4^2x+20=453 | | 7x+12+96=180 |