3x(2x+1)+2x=7x(3x-1)-84

Simple and best practice solution for 3x(2x+1)+2x=7x(3x-1)-84 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x(2x+1)+2x=7x(3x-1)-84 equation:



3x(2x+1)+2x=7x(3x-1)-84
We move all terms to the left:
3x(2x+1)+2x-(7x(3x-1)-84)=0
We add all the numbers together, and all the variables
2x+3x(2x+1)-(7x(3x-1)-84)=0
We multiply parentheses
6x^2+2x+3x-(7x(3x-1)-84)=0
We calculate terms in parentheses: -(7x(3x-1)-84), so:
7x(3x-1)-84
We multiply parentheses
21x^2-7x-84
Back to the equation:
-(21x^2-7x-84)
We add all the numbers together, and all the variables
6x^2+5x-(21x^2-7x-84)=0
We get rid of parentheses
6x^2-21x^2+5x+7x+84=0
We add all the numbers together, and all the variables
-15x^2+12x+84=0
a = -15; b = 12; c = +84;
Δ = b2-4ac
Δ = 122-4·(-15)·84
Δ = 5184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{5184}=72$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-72}{2*-15}=\frac{-84}{-30} =2+4/5 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+72}{2*-15}=\frac{60}{-30} =-2 $

See similar equations:

| 4x+13=-17-7x | | 0.60x=0.10x+1000 | | y/4+4=9 | | a/9+3=6 | | c/4+5=8 | | 0=-1.33x-4 | | 11=d/2+6 | | 3k-7k=3k+4 | | n/9+4=7 | | 6=-1.33x-4 | | x+0.05x-3500=0 | | 1-5m=1+6m | | x÷3+6=3 | | 4x5+7=6 | | 9x+0=-4 | | 0+7y=-4 | | 6x-15=4x-(-8) | | -0.1x^2+124x-3000=0 | | 2x-2/2=2 | | 104/x+5=240 | | 1/15x=200 | | x+43/4=7 | | d+197=-6d-6 | | -2c-6=c+141 | | -40-5y=0 | | e-159=-4e-9 | | -8p+9=p+189 | | (x-3)x2=30 | | -35-5y=0 | | -12-3y=0 | | x/5=30/50 | | —x2+2x+8=0 |

Equations solver categories