If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3w^2=675
We move all terms to the left:
3w^2-(675)=0
a = 3; b = 0; c = -675;
Δ = b2-4ac
Δ = 02-4·3·(-675)
Δ = 8100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{8100}=90$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-90}{2*3}=\frac{-90}{6} =-15 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+90}{2*3}=\frac{90}{6} =15 $
| -(3/4)x-1=5 | | 4-t=7 | | 8(6x-4)=7(-8x+6)+134 | | X*x*3.14=1519.76 | | 12y+60=14y-21 | | 132-y=180 | | 7v-72=8v | | 32+x+42=90 | | u/3=-30 | | 7(m+3.6)=73.5 | | 10x—7=63 | | 100/x*60=28 | | (2x-4)-(6x+6)=x | | 8(c-6)=3(c+10) | | 200*1.06x=500 | | b=133+47 | | 2d*3d= | | 5x+3=10.6 | | (3r+12)=(-8r+210) | | b=117+63=90 | | 3z-6=-5z-8 | | b=63=90 | | 4^x+1=81 | | (0.3x-25)+(0.1x-49)=90 | | -4x-8x+17=41 | | 5(4)^(2x-5)=6^(3x+7) | | 4u=5.2 | | 11^2x=915 | | (6x+50)+164=180 | | (6x+50)+64=180 | | 3x+4/2-3=5 | | 0.2(4+y)=y |