If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3w^2=14w+5
We move all terms to the left:
3w^2-(14w+5)=0
We get rid of parentheses
3w^2-14w-5=0
a = 3; b = -14; c = -5;
Δ = b2-4ac
Δ = -142-4·3·(-5)
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-16}{2*3}=\frac{-2}{6} =-1/3 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+16}{2*3}=\frac{30}{6} =5 $
| 8/7=b/7 | | 3x-9+1=2(1-3x)-1 | | 77^x=29 | | -8m-16-15m=-20m-7 | | 16−5(3t−4)=8(−2t+11) | | -4x-12=6-6x | | 5v-16=79 | | -6(1+5n)=22-2n | | 4(x+3)+2=13x-2 | | 3(2x+-1)+5=6(x+1) | | (4x-2)=38 | | -11-69=4x+141 | | 3(y-1)=-21 | | r-24.5=10.3 | | 10x–12=15x+13 | | -3.75=x-0.1x | | –16=3r+r | | a^2-9=3a-5 | | 49+y=9 | | 3x-5=+x+7 | | 4j-9=-17 | | -2x+-18=-2x+5 | | 4(n+8)=7+4n | | 13+7/7x=27 | | 10x+5=15x+21 | | 2x-6+75=3x+31 | | 48=6d+6 | | 25x-7=5x+3 | | 5(5-8k)=105 | | 24.5-r=10.3 | | 0=|–9c–45| | | 4+5x=3x+8 |