If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 3v = (5 + 7v)(v + -3) Reorder the terms: 3v = (5 + 7v)(-3 + v) Multiply (5 + 7v) * (-3 + v) 3v = (5(-3 + v) + 7v * (-3 + v)) 3v = ((-3 * 5 + v * 5) + 7v * (-3 + v)) 3v = ((-15 + 5v) + 7v * (-3 + v)) 3v = (-15 + 5v + (-3 * 7v + v * 7v)) 3v = (-15 + 5v + (-21v + 7v2)) Combine like terms: 5v + -21v = -16v 3v = (-15 + -16v + 7v2) Solving 3v = -15 + -16v + 7v2 Solving for variable 'v'. Reorder the terms: 15 + 3v + 16v + -7v2 = -15 + -16v + 7v2 + 15 + 16v + -7v2 Combine like terms: 3v + 16v = 19v 15 + 19v + -7v2 = -15 + -16v + 7v2 + 15 + 16v + -7v2 Reorder the terms: 15 + 19v + -7v2 = -15 + 15 + -16v + 16v + 7v2 + -7v2 Combine like terms: -15 + 15 = 0 15 + 19v + -7v2 = 0 + -16v + 16v + 7v2 + -7v2 15 + 19v + -7v2 = -16v + 16v + 7v2 + -7v2 Combine like terms: -16v + 16v = 0 15 + 19v + -7v2 = 0 + 7v2 + -7v2 15 + 19v + -7v2 = 7v2 + -7v2 Combine like terms: 7v2 + -7v2 = 0 15 + 19v + -7v2 = 0 Begin completing the square. Divide all terms by -7 the coefficient of the squared term: Divide each side by '-7'. -2.142857143 + -2.714285714v + v2 = 0 Move the constant term to the right: Add '2.142857143' to each side of the equation. -2.142857143 + -2.714285714v + 2.142857143 + v2 = 0 + 2.142857143 Reorder the terms: -2.142857143 + 2.142857143 + -2.714285714v + v2 = 0 + 2.142857143 Combine like terms: -2.142857143 + 2.142857143 = 0.000000000 0.000000000 + -2.714285714v + v2 = 0 + 2.142857143 -2.714285714v + v2 = 0 + 2.142857143 Combine like terms: 0 + 2.142857143 = 2.142857143 -2.714285714v + v2 = 2.142857143 The v term is -2.714285714v. Take half its coefficient (-1.357142857). Square it (1.841836734) and add it to both sides. Add '1.841836734' to each side of the equation. -2.714285714v + 1.841836734 + v2 = 2.142857143 + 1.841836734 Reorder the terms: 1.841836734 + -2.714285714v + v2 = 2.142857143 + 1.841836734 Combine like terms: 2.142857143 + 1.841836734 = 3.984693877 1.841836734 + -2.714285714v + v2 = 3.984693877 Factor a perfect square on the left side: (v + -1.357142857)(v + -1.357142857) = 3.984693877 Calculate the square root of the right side: 1.996169802 Break this problem into two subproblems by setting (v + -1.357142857) equal to 1.996169802 and -1.996169802.Subproblem 1
v + -1.357142857 = 1.996169802 Simplifying v + -1.357142857 = 1.996169802 Reorder the terms: -1.357142857 + v = 1.996169802 Solving -1.357142857 + v = 1.996169802 Solving for variable 'v'. Move all terms containing v to the left, all other terms to the right. Add '1.357142857' to each side of the equation. -1.357142857 + 1.357142857 + v = 1.996169802 + 1.357142857 Combine like terms: -1.357142857 + 1.357142857 = 0.000000000 0.000000000 + v = 1.996169802 + 1.357142857 v = 1.996169802 + 1.357142857 Combine like terms: 1.996169802 + 1.357142857 = 3.353312659 v = 3.353312659 Simplifying v = 3.353312659Subproblem 2
v + -1.357142857 = -1.996169802 Simplifying v + -1.357142857 = -1.996169802 Reorder the terms: -1.357142857 + v = -1.996169802 Solving -1.357142857 + v = -1.996169802 Solving for variable 'v'. Move all terms containing v to the left, all other terms to the right. Add '1.357142857' to each side of the equation. -1.357142857 + 1.357142857 + v = -1.996169802 + 1.357142857 Combine like terms: -1.357142857 + 1.357142857 = 0.000000000 0.000000000 + v = -1.996169802 + 1.357142857 v = -1.996169802 + 1.357142857 Combine like terms: -1.996169802 + 1.357142857 = -0.639026945 v = -0.639026945 Simplifying v = -0.639026945Solution
The solution to the problem is based on the solutions from the subproblems. v = {3.353312659, -0.639026945}
| 7x+(-2y)=10 | | 3x+12=85 | | -5x+9=9 | | -4-7x=-88 | | 171-7x=29x+23 | | 2(x-7)-7=5 | | 3-6x=-15 | | y=(x+6)(x+6) | | 9+6x=-15 | | x+90-x+180-x=190 | | (8y-4y+5)-(4y+5y-3)= | | -2x+8=2 | | -2x+4=16y | | 8x+6=2x+11 | | 33x^2-46x+17=0 | | 2x+35+25+x=90 | | 5+10(x-10)=15 | | -10-3x=-43 | | 2x+35x+25=90 | | -5+9=39 | | -5x+4=64 | | 2x=-1 | | -6x+9=15 | | 3m^2+28m+32=0 | | 6x^2-3x-4=0 | | -3x+7=40 | | -2x+6=-12 | | 6x^2+91x-150= | | -6+10= | | -4x^2-8x+45= | | 4x^2+10x=0 | | 15a^2-68a+32= |