If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3v^2+6v=0
a = 3; b = 6; c = 0;
Δ = b2-4ac
Δ = 62-4·3·0
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6}{2*3}=\frac{-12}{6} =-2 $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6}{2*3}=\frac{0}{6} =0 $
| 41=30-3(5-2w) | | 2x+4x-x=5+3+ | | 8-z/10=-1 | | 6x+2x(x+2)=45 | | 2x+4+-x=5+3x | | -3v^2-5v-2=0 | | 27=23-6(-5-1w) | | 12=x(+4) | | 5+6s=15+4s | | 2/3k-5=1/4 | | -11x+4x+10=-6x+40 | | 0x-1=6 | | -15+n=-1 | | 13x+1=-18x+14 | | 9/10=a/10 | | 10x^2+10x+90=0 | | .67(3n+12)-9n=-48 | | -4x+8=64 | | 8-x*7=-6 | | 3-x-5=19+2x | | 2x+6=7x=-14 | | 4(x-4)=4x | | -2(7+7x)-3(1-7x)=-31 | | -18=-7(-m+3)-4(6+4m) | | 39=-7(7x-3)-3(3x-6) | | (3x+25)+(4x+15)=90 | | 39=-7(7x-3)-3(3x-6 | | 2x+52=90° | | x+4x=114 | | -7(n+4)-4(7+4n)=-10 | | 3x-15=11.44 | | -14-2m=4(1+m) |