If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3u^2+u=4
We move all terms to the left:
3u^2+u-(4)=0
a = 3; b = 1; c = -4;
Δ = b2-4ac
Δ = 12-4·3·(-4)
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-7}{2*3}=\frac{-8}{6} =-1+1/3 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+7}{2*3}=\frac{6}{6} =1 $
| 3.8-(-1-9.27)=2.6+13.3x | | y-3+45678/2345677774532-2345675345=1234567890 | | -5(y-3)=-4y-4 | | x+32/x^2=0 | | 9y3=5y+2 | | X(t)=15-2t | | 19-5/17x=17 | | 9y–3=5y+2 | | (k-7)(k-4)-6=(k+2)(k-8) | | 14b^2+116b-90=0 | | 2m-(3)=7 | | 0=-2t^2+7t+4 | | 0=-2t^2+7t-4 | | (x/4)=x | | -6x-6(-5x+9)=186 | | n-1/2=43/17 | | 0.7+x=1 | | -6-6(-5x+9)=186 | | m+1-3(2m^2-2m)=1 | | x+1=10x-5 | | C(x)=0.25x+5 | | w+35=42 | | 1/4r=-12 | | y-27=6 | | X-3×2x+4=-2 | | x+30.34=-22.8 | | 7k-4=11 | | 7(x-7)(x-8)=x-7 | | 6f+45=63 | | 7x=4+2 | | 6=w3-16 | | 30=-3x-3(-2x-16) |