If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3t^2-30t+72=0
a = 3; b = -30; c = +72;
Δ = b2-4ac
Δ = -302-4·3·72
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-6}{2*3}=\frac{24}{6} =4 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+6}{2*3}=\frac{36}{6} =6 $
| 2x^2=17x-41 | | 6+8=(4w-7)-(2w+1) | | 6n-6=4n-5 | | f/3+4=0 | | 5.5^(5x)/25^x=25 | | 6x-3x+4=4+x-10 | | 4.25(2x-8)=1.25(x+9) | | 26-6x=-64 | | 2r-(15-r)=13+2r | | 3x=−14 | | -7x-27=6(2x-10) | | 22/x=2/7 | | 4m-6=-17+12m-9m | | 6/z =2/1 | | x-4x=−14 | | 6z =21 | | x=4x−14 | | 8=(-11/15)(-6)+x | | -2x+40=8 | | 4/5=x/55 | | 3x=-(5+x) | | -2=6+5w | | 9(x+9)=41 | | 14x+6.5(x+5)=10.25(2x+5) | | -c-10=4c | | -3(x-5)-20=7 | | 9(x+9)=14 | | x=100+0.75x | | 2/5=16+x | | 2(x-3)-20=-6 | | 6m+2+5(m-2)=56 | | 13x24=4x |