If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3t^2+6t=18
We move all terms to the left:
3t^2+6t-(18)=0
a = 3; b = 6; c = -18;
Δ = b2-4ac
Δ = 62-4·3·(-18)
Δ = 252
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{252}=\sqrt{36*7}=\sqrt{36}*\sqrt{7}=6\sqrt{7}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6\sqrt{7}}{2*3}=\frac{-6-6\sqrt{7}}{6} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6\sqrt{7}}{2*3}=\frac{-6+6\sqrt{7}}{6} $
| 23=6n+5 | | 6x+15=x+20 | | 35x^2+23x-12=0 | | 4x-5+115=90 | | 5/6=x24 | | -3(h+4)+15=6-4h | | 3(g-14)=9 | | 1/5x+1/5x+5=7/60 | | 2x+11=-55 | | 6x+72=142 | | 2/6=x/50 | | 4z^2+6z+5=0 | | 27x^2-120x+11=0 | | 65-x=53 | | 10=10s-90 | | 18=6-b+4b | | 2x+11=-3x+16 | | 1/3x+1/3x-1=3/30 | | h+3h+2h+8=20 | | 16=-40x-25x^2 | | 7x-5-4x=7 | | 4x(4x+1)=2112 | | 4m+12=22 | | 3x+4x+8=14 | | 2m+3(m-8=1) | | 4x(4x-1)=2112 | | 8m+4=5m-14 | | 5x+30+2x-3=90 | | 8=x/3-4 | | 1/4x2/5=3/2x-1/3 | | 19b=17 | | 15,75=0,50+0.5x+x |