If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3t^2+6t-18=0
a = 3; b = 6; c = -18;
Δ = b2-4ac
Δ = 62-4·3·(-18)
Δ = 252
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{252}=\sqrt{36*7}=\sqrt{36}*\sqrt{7}=6\sqrt{7}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6\sqrt{7}}{2*3}=\frac{-6-6\sqrt{7}}{6} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6\sqrt{7}}{2*3}=\frac{-6+6\sqrt{7}}{6} $
| -63+x/5=-9 | | 0.5(3x-6)=5 | | 5.9q=32.6 | | 6(d+2)+3=63 | | -6=y+4+5 | | y+17=y-15 | | (9+7x)=30 | | 12−5x=−(5x+6) | | 11x−4=8+7 | | -2(s-4)=3s+2 | | 10(×-1)=8x-2 | | 7+2x-1=15 | | .2=(146-x)x | | 10-2(8k+6)=8k+3+2 | | (2x-5)+(x+25)+x=180 | | J-5=4(j-8) | | 43x+5=2 | | 11t(4)-5=105 | | 6(x+02)=42 | | −2x–6=2−4x−(x−1) | | 8/(4)12-(2)32=m | | J-5=4(j-3-5) | | 5(x–2)–3x=6x+26 | | x72=2 | | x,12x=60 | | 22/11=x/13 | | 2.1w=-10.5 | | 1+4(-6n-4)=10n+4-n | | 7r−9=7+r+8 | | -53r+17=27 | | -12=15t | | ─2c–2=─3c–8 |