3t+1t+132t2=72

Simple and best practice solution for 3t+1t+132t2=72 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3t+1t+132t2=72 equation:



3t+1t+132t^2=72
We move all terms to the left:
3t+1t+132t^2-(72)=0
We add all the numbers together, and all the variables
132t^2+4t-72=0
a = 132; b = 4; c = -72;
Δ = b2-4ac
Δ = 42-4·132·(-72)
Δ = 38032
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{38032}=\sqrt{16*2377}=\sqrt{16}*\sqrt{2377}=4\sqrt{2377}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{2377}}{2*132}=\frac{-4-4\sqrt{2377}}{264} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{2377}}{2*132}=\frac{-4+4\sqrt{2377}}{264} $

See similar equations:

| (65+2x)+(5x-5)+(x+40)=180 | | 3x+4x=126 | | 8b+4=4+3b | | 49x^2+49x-603=0 | | C²-2c-15=0 | | 2x^2+2x-174=0 | | 169-13=15x-2x | | 2x^2+2x+174=0 | | 144=12x+12 | | (5x2–2x)+(6x–4)=0 | | -4.9x^2-7.22x+1.3=0 | | 28/x=x/7 | | 8x-7=12, | | -3x+9=12, | | 50-(2x/15)=50-(2x/15) | | 11r²+15=-2r | | 23=3a+2 | | 20-x/15=20-x/15 | | 21g+7=21 | | 2(3s+5)=28 | | 50-(x/15)-(1/5)=50-(x/15)-(1/5) | | 50-(3x/15)=x/30 | | K^2-9k+6=0 | | 4+k^2-9k+2=0 | | 0.6-y=0.5 | | 50-(x/15)=1/15 | | 5m+14=7m-4 | | 5p+4=3p+30 | | 18x/8=45 | | -0.7x+9.97=-0.5x+6.57 | | x/2-x/3+x/4=6 | | 9p(p-6)=0 |

Equations solver categories