3t(3t)+2t-3=0

Simple and best practice solution for 3t(3t)+2t-3=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3t(3t)+2t-3=0 equation:


Simplifying
3t(3t) + 2t + -3 = 0

Remove parenthesis around (3t)
3t * 3t + 2t + -3 = 0

Reorder the terms for easier multiplication:
3 * 3t * t + 2t + -3 = 0

Multiply 3 * 3
9t * t + 2t + -3 = 0

Multiply t * t
9t2 + 2t + -3 = 0

Reorder the terms:
-3 + 2t + 9t2 = 0

Solving
-3 + 2t + 9t2 = 0

Solving for variable 't'.

Begin completing the square.  Divide all terms by
9 the coefficient of the squared term: 

Divide each side by '9'.
-0.3333333333 + 0.2222222222t + t2 = 0

Move the constant term to the right:

Add '0.3333333333' to each side of the equation.
-0.3333333333 + 0.2222222222t + 0.3333333333 + t2 = 0 + 0.3333333333

Reorder the terms:
-0.3333333333 + 0.3333333333 + 0.2222222222t + t2 = 0 + 0.3333333333

Combine like terms: -0.3333333333 + 0.3333333333 = 0.0000000000
0.0000000000 + 0.2222222222t + t2 = 0 + 0.3333333333
0.2222222222t + t2 = 0 + 0.3333333333

Combine like terms: 0 + 0.3333333333 = 0.3333333333
0.2222222222t + t2 = 0.3333333333

The t term is 0.2222222222t.  Take half its coefficient (0.1111111111).
Square it (0.01234567901) and add it to both sides.

Add '0.01234567901' to each side of the equation.
0.2222222222t + 0.01234567901 + t2 = 0.3333333333 + 0.01234567901

Reorder the terms:
0.01234567901 + 0.2222222222t + t2 = 0.3333333333 + 0.01234567901

Combine like terms: 0.3333333333 + 0.01234567901 = 0.34567901231
0.01234567901 + 0.2222222222t + t2 = 0.34567901231

Factor a perfect square on the left side:
(t + 0.1111111111)(t + 0.1111111111) = 0.34567901231

Calculate the square root of the right side: 0.587944736

Break this problem into two subproblems by setting 
(t + 0.1111111111) equal to 0.587944736 and -0.587944736.

Subproblem 1

t + 0.1111111111 = 0.587944736 Simplifying t + 0.1111111111 = 0.587944736 Reorder the terms: 0.1111111111 + t = 0.587944736 Solving 0.1111111111 + t = 0.587944736 Solving for variable 't'. Move all terms containing t to the left, all other terms to the right. Add '-0.1111111111' to each side of the equation. 0.1111111111 + -0.1111111111 + t = 0.587944736 + -0.1111111111 Combine like terms: 0.1111111111 + -0.1111111111 = 0.0000000000 0.0000000000 + t = 0.587944736 + -0.1111111111 t = 0.587944736 + -0.1111111111 Combine like terms: 0.587944736 + -0.1111111111 = 0.4768336249 t = 0.4768336249 Simplifying t = 0.4768336249

Subproblem 2

t + 0.1111111111 = -0.587944736 Simplifying t + 0.1111111111 = -0.587944736 Reorder the terms: 0.1111111111 + t = -0.587944736 Solving 0.1111111111 + t = -0.587944736 Solving for variable 't'. Move all terms containing t to the left, all other terms to the right. Add '-0.1111111111' to each side of the equation. 0.1111111111 + -0.1111111111 + t = -0.587944736 + -0.1111111111 Combine like terms: 0.1111111111 + -0.1111111111 = 0.0000000000 0.0000000000 + t = -0.587944736 + -0.1111111111 t = -0.587944736 + -0.1111111111 Combine like terms: -0.587944736 + -0.1111111111 = -0.6990558471 t = -0.6990558471 Simplifying t = -0.6990558471

Solution

The solution to the problem is based on the solutions from the subproblems. t = {0.4768336249, -0.6990558471}

See similar equations:

| -2(3z+7)= | | 3x^2+3x+2= | | 5(x+5)-22= | | X^2-10n=0 | | y=-3(5+2x)-7 | | (4xq)+(12x(1-q))=(16xq)+(8x(1-q)) | | r+20=9r-4 | | 9S^2-49= | | y=-1+3(m+4) | | 22.8=18x | | (6y^2+5)+(-3y^2-8)= | | 0=-1x+3 | | -(3x+5)+(2x+6)+1=-5(x-1)+(3x+2)+3 | | x=.2(2*3.14*2x+3) | | 25S^2-121= | | y=3n+3(1+8n) | | y=-3p-(-8+4p) | | q(1)+(1-q)(-1)= | | 5x^4+25x+15=0 | | 3x^4+16x+9=0 | | 4x+2=6x-1 | | 49B^2-F^2= | | 16x+34-290=0 | | y=-3(1-3x)+2x | | 7x^2+40x-63=0 | | 3x^4+12x+7=0 | | 3x^2-11x+17=21 | | 3(4x+2)-4=2x+32 | | -36+c^2= | | log(36x^2+25)=log(x^2+2) | | h-6+7h=15 | | y=-2(7-2n) |

Equations solver categories