If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3s^2-13s+4=0
a = 3; b = -13; c = +4;
Δ = b2-4ac
Δ = -132-4·3·4
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-13)-11}{2*3}=\frac{2}{6} =1/3 $$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-13)+11}{2*3}=\frac{24}{6} =4 $
| 1/3z-2=6-3/4z | | 4(2x+6)=12-2(x-6) | | 6x-16=-118 | | 4w+4+2w+11+4w+8=360 | | 4w+4+4w+8+2w+11=180 | | x+(x+3)+(x+2)+(x+4)=29 | | 4w+4+2w+11=180 | | 5(8x-1)-2(8x)=3.4 | | f(4)=3(4)-5 | | 7b-5/2=6b-5/7 | | 256x^2=288x-81 | | (x+2)(x−4)=(x+3)2 | | 3x^2-15x+20=3x^2+16-12 | | 3/2x=1/6 | | m√2=14 | | 3,800=x+2,700 | | 6x^2+x=-32 | | 5/8+z=9 | | 4/5=-2/3+h | | 0.9t−1.2=0.4+0.1t | | y-22=24/9 | | 14x+36=274 | | 5/9=x-8/9 | | 126-2x=5x | | 20=x/30 | | s-5/8=24 | | -50.6=-4.6x | | 2^3x*2=8 | | h/7=-2.3 | | 3x(12)=-5x(10) | | F(2)=12-7x | | 4.7f=-28.2 |