If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3r^2+16r+16=0
a = 3; b = 16; c = +16;
Δ = b2-4ac
Δ = 162-4·3·16
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-8}{2*3}=\frac{-24}{6} =-4 $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+8}{2*3}=\frac{-8}{6} =-1+1/3 $
| 7(x+3)-(4x-6)=13 | | 3(t-5)-6=3 | | (3x-2)(x+1)=3x^2+5 | | -4(m-15)=-12 | | 12y-9y+y-y+4y=14 | | a-10=41 | | 7h^2-4h-8=0 | | 5+9x=-19+x# | | 41-a=10 | | -2=6/7p3 | | -2(k-7)=-4 | | 14r-14r+3r-2=10 | | 10-a=41 | | -2(k-7=-4 | | 3^x=14 | | 17=3(v+-2)-11 | | 8x^2+3x−8=0 | | 18r-16r=14 | | 4b-4b+4b-4b+b=7 | | 4(w+2)-2=14 | | 3(v+10)-19=-10 | | 7c+2c-2c-4c=12 | | 3a/8-a/12=7/2=7 | | 5x+5=x+2 | | 4x+5+3x−12= | | 19v-18v+v=20 | | 16b=104 | | 5x+5=2x2 | | 7a-6a=16 | | 3=2/15=x | | 3(5y-6)=12= | | 2=4q |