If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3p^2=20-11p
We move all terms to the left:
3p^2-(20-11p)=0
We add all the numbers together, and all the variables
3p^2-(-11p+20)=0
We get rid of parentheses
3p^2+11p-20=0
a = 3; b = 11; c = -20;
Δ = b2-4ac
Δ = 112-4·3·(-20)
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-19}{2*3}=\frac{-30}{6} =-5 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+19}{2*3}=\frac{8}{6} =1+1/3 $
| -x^2+14x=50 | | 74+5w+48+10w–14=180 | | 9x+26=20x-7 | | 17=5a | | x^2+14x=50 | | 3(w-6)-7w=6 | | 5x+50=37+63 | | 1.5x-3=1.5 | | g=16÷4 | | 5x+50=37+64 | | v2-30=v | | 3M+5=5(m-7) | | 4x+x-4x-x+x=14 | | c=11c+45 | | 8+5p+7p=20 | | 109-u=211 | | 10x+16-6×=4 | | 2w-16+3w-11+w-5=180 | | 92x−1=43x+9 | | | | 2a^2=a+16 | | x^2-14x=50 | | -139=-6+7(4m+1) | | 4/7+x=4/2 | | -7x-6x=-15 | | 3x+27=2x+16 | | | | | | | | a2+3= | | 4(n-4)+14n=2 | | 47+3y+16+2y-15=180 |