3p-8=2(p+8)3p

Simple and best practice solution for 3p-8=2(p+8)3p equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3p-8=2(p+8)3p equation:


Simplifying
3p + -8 = 2(p + 8) * 3p

Reorder the terms:
-8 + 3p = 2(p + 8) * 3p

Reorder the terms:
-8 + 3p = 2(8 + p) * 3p

Reorder the terms for easier multiplication:
-8 + 3p = 2 * 3p(8 + p)

Multiply 2 * 3
-8 + 3p = 6p(8 + p)
-8 + 3p = (8 * 6p + p * 6p)
-8 + 3p = (48p + 6p2)

Solving
-8 + 3p = 48p + 6p2

Solving for variable 'p'.

Combine like terms: 3p + -48p = -45p
-8 + -45p + -6p2 = 48p + 6p2 + -48p + -6p2

Reorder the terms:
-8 + -45p + -6p2 = 48p + -48p + 6p2 + -6p2

Combine like terms: 48p + -48p = 0
-8 + -45p + -6p2 = 0 + 6p2 + -6p2
-8 + -45p + -6p2 = 6p2 + -6p2

Combine like terms: 6p2 + -6p2 = 0
-8 + -45p + -6p2 = 0

Factor out the Greatest Common Factor (GCF), '-1'.
-1(8 + 45p + 6p2) = 0

Ignore the factor -1.

Subproblem 1

Set the factor '(8 + 45p + 6p2)' equal to zero and attempt to solve: Simplifying 8 + 45p + 6p2 = 0 Solving 8 + 45p + 6p2 = 0 Begin completing the square. Divide all terms by 6 the coefficient of the squared term: Divide each side by '6'. 1.333333333 + 7.5p + p2 = 0 Move the constant term to the right: Add '-1.333333333' to each side of the equation. 1.333333333 + 7.5p + -1.333333333 + p2 = 0 + -1.333333333 Reorder the terms: 1.333333333 + -1.333333333 + 7.5p + p2 = 0 + -1.333333333 Combine like terms: 1.333333333 + -1.333333333 = 0.000000000 0.000000000 + 7.5p + p2 = 0 + -1.333333333 7.5p + p2 = 0 + -1.333333333 Combine like terms: 0 + -1.333333333 = -1.333333333 7.5p + p2 = -1.333333333 The p term is 7.5p. Take half its coefficient (3.75). Square it (14.0625) and add it to both sides. Add '14.0625' to each side of the equation. 7.5p + 14.0625 + p2 = -1.333333333 + 14.0625 Reorder the terms: 14.0625 + 7.5p + p2 = -1.333333333 + 14.0625 Combine like terms: -1.333333333 + 14.0625 = 12.729166667 14.0625 + 7.5p + p2 = 12.729166667 Factor a perfect square on the left side: (p + 3.75)(p + 3.75) = 12.729166667 Calculate the square root of the right side: 3.567795771 Break this problem into two subproblems by setting (p + 3.75) equal to 3.567795771 and -3.567795771.

Subproblem 1

p + 3.75 = 3.567795771 Simplifying p + 3.75 = 3.567795771 Reorder the terms: 3.75 + p = 3.567795771 Solving 3.75 + p = 3.567795771 Solving for variable 'p'. Move all terms containing p to the left, all other terms to the right. Add '-3.75' to each side of the equation. 3.75 + -3.75 + p = 3.567795771 + -3.75 Combine like terms: 3.75 + -3.75 = 0.00 0.00 + p = 3.567795771 + -3.75 p = 3.567795771 + -3.75 Combine like terms: 3.567795771 + -3.75 = -0.182204229 p = -0.182204229 Simplifying p = -0.182204229

Subproblem 2

p + 3.75 = -3.567795771 Simplifying p + 3.75 = -3.567795771 Reorder the terms: 3.75 + p = -3.567795771 Solving 3.75 + p = -3.567795771 Solving for variable 'p'. Move all terms containing p to the left, all other terms to the right. Add '-3.75' to each side of the equation. 3.75 + -3.75 + p = -3.567795771 + -3.75 Combine like terms: 3.75 + -3.75 = 0.00 0.00 + p = -3.567795771 + -3.75 p = -3.567795771 + -3.75 Combine like terms: -3.567795771 + -3.75 = -7.317795771 p = -7.317795771 Simplifying p = -7.317795771

Solution

The solution to the problem is based on the solutions from the subproblems. p = {-0.182204229, -7.317795771}

Solution

p = {-0.182204229, -7.317795771}

See similar equations:

| 11x+11y=14 | | n-13+4n= | | 2a+6+b+a+b=180 | | 59n-16-8n=-10 | | 10x35/6 | | 2x(2y)= | | .3x-2.8=1.8x+1.2 | | 8h+10=-6 | | 2b^2-9=125 | | -3x-10y=-20 | | (2x+4)-(x-7)=(4-3x)+(3x+1) | | -3/5b=-5/6 | | -86-4x=26-11x | | 2(4x+6)=5x+3(x+4) | | 50/500 | | 1/9m-1=7 | | 5x-5-5x=5 | | 0=(3x^2)-74x+330 | | X-(-3.4)=-10 | | 0.5t-3t=5 | | .04x+.08y=200 | | 5k+5z=k | | 32+0.2z=7 | | 1.2y+36=8.4 | | -6/5÷12 | | 3.6=0.72(m+6) | | 2(5x-2)+5=-8 | | (((9x3)-3)/2)/4 | | n(s+2)=3s+m | | 2(5x)=24 | | 5/2x=3/5x | | 40A+1.0235*A*1.5=644.23 |

Equations solver categories