If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3n^2-7n-880=0
a = 3; b = -7; c = -880;
Δ = b2-4ac
Δ = -72-4·3·(-880)
Δ = 10609
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{10609}=103$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-103}{2*3}=\frac{-96}{6} =-16 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+103}{2*3}=\frac{110}{6} =18+1/3 $
| -4g-5=17 | | 88=5x+34+8x+15 | | 12=6z-4 | | a-55=17 | | 6x^2=315/x^2 | | 3x+5=-4-9 | | 4x-27+x+9=90 | | 2/(66+2x)=90 | | 2/(66+2x=90) | | 5x-3x^2=-14 | | 8+3x-7x-10=-20 | | 4n=n+5 | | 5+y-12=y+9 | | 4x-1=3(x+1)+1x | | 275x^2+120x-16=0 | | 275x^2+120x+48=0 | | 3(6-4x)-27x=10 | | 100+3x=180 | | 3g+3=6g | | y+6=4y+4 | | x-7=2x-5=x+10 | | 4/3x-1/3=7+x | | x2+(x-2)^2=52 | | X-7y=62 | | 16x-3+9x-11=180 | | a^2+1=3 | | 16x+3+9x-11=180 | | -3m+3m+18=0 | | 5y-5=6y-5 | | 16x+3+26=180 | | 8x+90=21x-12 | | 13x+3=14x-6=180 |