If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3n^2+7n-66=0
a = 3; b = 7; c = -66;
Δ = b2-4ac
Δ = 72-4·3·(-66)
Δ = 841
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{841}=29$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-29}{2*3}=\frac{-36}{6} =-6 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+29}{2*3}=\frac{22}{6} =3+2/3 $
| 5(x-9)+(11-2x)=5 | | 77x+7=5 | | 3+4d=11 | | 5n^2-9=-12 | | x-51=-20 | | 2j−3=1 | | 2x+33=9 | | 5(7)+6y=-7 | | 6v2+10v-56=0 | | X3+7x2-2x+9=0 | | (2x+7)/3=5 | | 9(y-1)=8(9+y) | | 1/9a=6/7 | | x+6=55/8 | | 8−2f=2 | | 4x-3=6+4x-5 | | (13/4)+4y=8y-(1/12) | | 17-4x=4x+5-7x | | 2(x-3)+4x-1=0 | | 14x^2+3x=2x+2 | | (5x+3)4=13 | | x*4-7=9 | | 48x-2(7x-1)=3(1+4x)+12 | | (5/6)+1/5t=4/6 | | -2(7x+15=18+2x | | (x-4)²=8∙(2-x) | | 2k2+2k-60=0 | | 6y^2+25y+21=0 | | 8h+5(2-6h=) | | 2x-19x+17=0 | | 2m^2+4m+8=0 | | 180°(n−2)=60°n |