If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3m^2-22m+25=0
a = 3; b = -22; c = +25;
Δ = b2-4ac
Δ = -222-4·3·25
Δ = 184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{184}=\sqrt{4*46}=\sqrt{4}*\sqrt{46}=2\sqrt{46}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-22)-2\sqrt{46}}{2*3}=\frac{22-2\sqrt{46}}{6} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-22)+2\sqrt{46}}{2*3}=\frac{22+2\sqrt{46}}{6} $
| 10x-28=180 | | 5/y=4/7 | | 10x+-28=180 | | 10x+-28=18 | | 3-(5x+26)=6x-18 | | 3-(5x+26=6x-18 | | Y=-16t^2+160t+4 | | 5x=25-3.33x | | 8x-200=350-5x | | 5-t/4=t+4/3 | | |-2x+17|=49 | | |-2x+5|=34 | | 17-3a=5a=1-16a | | 2(3t-6)=20t+7 | | (6x-2)+(4x+6)+x=180 | | [6x+2/3x+3/5x=90° | | 27.50=23.25+17.00x | | X2+x-1332=0 | | 10x-8=35x+12 | | 3(1+p)=-5(p-1) | | b+b/3=8 | | 90+(5x-6)+(4x+33)=180 | | -4x3=-x-30 | | 3/4y+1=13 | | 2x+8)(x)=2170 | | 2^(v+8)=3^(2v-1) | | 8y+3=6y-17 | | 3(y-6)-(y+2)=4 | | 2(2n+1/5)+1=6 | | 2(2n+1÷5)+1=6 | | 0=16t^2+300 | | (n+30)-2n=8 |