If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3m+6+m(2)+5m-1=0
We add all the numbers together, and all the variables
m^2+8m+5=0
a = 1; b = 8; c = +5;
Δ = b2-4ac
Δ = 82-4·1·5
Δ = 44
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{44}=\sqrt{4*11}=\sqrt{4}*\sqrt{11}=2\sqrt{11}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{11}}{2*1}=\frac{-8-2\sqrt{11}}{2} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{11}}{2*1}=\frac{-8+2\sqrt{11}}{2} $
| 13=x^2+9x=38 | | 8-8x=168 | | -11w-5w=16 | | -0+6y=10 | | 5/6x+11/4=17/3 | | 19k-10=18k | | x+(x+15)+x=180 | | 90=5(m-67) | | 5-(2×n)=7 | | 3r+1=8+3 | | 3x-0.5=2x+0.3 | | 11-2c=3 | | 5x+21=2(x+21 | | x+4x+5x2=3 | | C=v+7 | | -4=q-10/2 | | -14g=-19-15g | | 15-(1/2)b=-3 | | 11x=42+5x | | z-64/5=6 | | 9(4r-6)=36r-54 | | C=g+16 | | 5(y-3)=-7y+21 | | -9+x=22 | | 3(x-1=18 | | 41.06+s=67.154 | | 3t-11=4t | | 7r+5=2r+6 | | F(x)=8/5x-3 | | 5/4e+1/2=2e-1/3 | | -20+14b=13b | | 91=31+4t |