3m(2m-1)+5=6(m+11)

Simple and best practice solution for 3m(2m-1)+5=6(m+11) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3m(2m-1)+5=6(m+11) equation:


Simplifying
3m(2m + -1) + 5 = 6(m + 11)

Reorder the terms:
3m(-1 + 2m) + 5 = 6(m + 11)
(-1 * 3m + 2m * 3m) + 5 = 6(m + 11)
(-3m + 6m2) + 5 = 6(m + 11)

Reorder the terms:
5 + -3m + 6m2 = 6(m + 11)

Reorder the terms:
5 + -3m + 6m2 = 6(11 + m)
5 + -3m + 6m2 = (11 * 6 + m * 6)
5 + -3m + 6m2 = (66 + 6m)

Solving
5 + -3m + 6m2 = 66 + 6m

Solving for variable 'm'.

Reorder the terms:
5 + -66 + -3m + -6m + 6m2 = 66 + 6m + -66 + -6m

Combine like terms: 5 + -66 = -61
-61 + -3m + -6m + 6m2 = 66 + 6m + -66 + -6m

Combine like terms: -3m + -6m = -9m
-61 + -9m + 6m2 = 66 + 6m + -66 + -6m

Reorder the terms:
-61 + -9m + 6m2 = 66 + -66 + 6m + -6m

Combine like terms: 66 + -66 = 0
-61 + -9m + 6m2 = 0 + 6m + -6m
-61 + -9m + 6m2 = 6m + -6m

Combine like terms: 6m + -6m = 0
-61 + -9m + 6m2 = 0

Begin completing the square.  Divide all terms by
6 the coefficient of the squared term: 

Divide each side by '6'.
-10.16666667 + -1.5m + m2 = 0

Move the constant term to the right:

Add '10.16666667' to each side of the equation.
-10.16666667 + -1.5m + 10.16666667 + m2 = 0 + 10.16666667

Reorder the terms:
-10.16666667 + 10.16666667 + -1.5m + m2 = 0 + 10.16666667

Combine like terms: -10.16666667 + 10.16666667 = 0.00000000
0.00000000 + -1.5m + m2 = 0 + 10.16666667
-1.5m + m2 = 0 + 10.16666667

Combine like terms: 0 + 10.16666667 = 10.16666667
-1.5m + m2 = 10.16666667

The m term is -1.5m.  Take half its coefficient (-0.75).
Square it (0.5625) and add it to both sides.

Add '0.5625' to each side of the equation.
-1.5m + 0.5625 + m2 = 10.16666667 + 0.5625

Reorder the terms:
0.5625 + -1.5m + m2 = 10.16666667 + 0.5625

Combine like terms: 10.16666667 + 0.5625 = 10.72916667
0.5625 + -1.5m + m2 = 10.72916667

Factor a perfect square on the left side:
(m + -0.75)(m + -0.75) = 10.72916667

Calculate the square root of the right side: 3.275540668

Break this problem into two subproblems by setting 
(m + -0.75) equal to 3.275540668 and -3.275540668.

Subproblem 1

m + -0.75 = 3.275540668 Simplifying m + -0.75 = 3.275540668 Reorder the terms: -0.75 + m = 3.275540668 Solving -0.75 + m = 3.275540668 Solving for variable 'm'. Move all terms containing m to the left, all other terms to the right. Add '0.75' to each side of the equation. -0.75 + 0.75 + m = 3.275540668 + 0.75 Combine like terms: -0.75 + 0.75 = 0.00 0.00 + m = 3.275540668 + 0.75 m = 3.275540668 + 0.75 Combine like terms: 3.275540668 + 0.75 = 4.025540668 m = 4.025540668 Simplifying m = 4.025540668

Subproblem 2

m + -0.75 = -3.275540668 Simplifying m + -0.75 = -3.275540668 Reorder the terms: -0.75 + m = -3.275540668 Solving -0.75 + m = -3.275540668 Solving for variable 'm'. Move all terms containing m to the left, all other terms to the right. Add '0.75' to each side of the equation. -0.75 + 0.75 + m = -3.275540668 + 0.75 Combine like terms: -0.75 + 0.75 = 0.00 0.00 + m = -3.275540668 + 0.75 m = -3.275540668 + 0.75 Combine like terms: -3.275540668 + 0.75 = -2.525540668 m = -2.525540668 Simplifying m = -2.525540668

Solution

The solution to the problem is based on the solutions from the subproblems. m = {4.025540668, -2.525540668}

See similar equations:

| 200x=200x/2.7474 | | 5(x-4)=6x-20 | | 200x=200x/2.7171 | | 2500/(x^2) | | 0=4r+6r | | 4y-(3+y)*y=2 | | -10=1-2x+1 | | 2n^2=-12n-7 | | -19=p-3 | | xsquared+2x+1=0 | | 3(-4)+2y=62 | | 4x+2y+3z=17 | | -6(4)-3y=5 | | 67=3x+13 | | 4x(x+5)=4 | | -12+3n=-4(1-n) | | 5+(-8)n=9 | | 2x^3+11x^2+10x-3=0 | | 3a=(6b)-4 | | -35-7n=-7(5+n) | | 2x+3y+4y=20 | | X-5/6=-19/30 | | 3+7(n+4)=31+7n | | -3p-5p=0 | | 6x+2(2-x-2)=0 | | 6(n+1)=-4+8n | | Radius=9.3in | | I=(300)(.11)(2) | | y+2.5=17 | | 9m-19=3m | | -4n^2+5n-11=2n-6-5n^2 | | 3m-(1+m)=14-m |

Equations solver categories