If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 3i(6 + -5i) + -4(2 + 3i) = 0 (6 * 3i + -5i * 3i) + -4(2 + 3i) = 0 (18i + -15i2) + -4(2 + 3i) = 0 18i + -15i2 + (2 * -4 + 3i * -4) = 0 18i + -15i2 + (-8 + -12i) = 0 Reorder the terms: -8 + 18i + -12i + -15i2 = 0 Combine like terms: 18i + -12i = 6i -8 + 6i + -15i2 = 0 Solving -8 + 6i + -15i2 = 0 Solving for variable 'i'. Begin completing the square. Divide all terms by -15 the coefficient of the squared term: Divide each side by '-15'. 0.5333333333 + -0.4i + i2 = 0 Move the constant term to the right: Add '-0.5333333333' to each side of the equation. 0.5333333333 + -0.4i + -0.5333333333 + i2 = 0 + -0.5333333333 Reorder the terms: 0.5333333333 + -0.5333333333 + -0.4i + i2 = 0 + -0.5333333333 Combine like terms: 0.5333333333 + -0.5333333333 = 0.0000000000 0.0000000000 + -0.4i + i2 = 0 + -0.5333333333 -0.4i + i2 = 0 + -0.5333333333 Combine like terms: 0 + -0.5333333333 = -0.5333333333 -0.4i + i2 = -0.5333333333 The i term is -0.4i. Take half its coefficient (-0.2). Square it (0.04) and add it to both sides. Add '0.04' to each side of the equation. -0.4i + 0.04 + i2 = -0.5333333333 + 0.04 Reorder the terms: 0.04 + -0.4i + i2 = -0.5333333333 + 0.04 Combine like terms: -0.5333333333 + 0.04 = -0.4933333333 0.04 + -0.4i + i2 = -0.4933333333 Factor a perfect square on the left side: (i + -0.2)(i + -0.2) = -0.4933333333 Can't calculate square root of the right side. The solution to this equation could not be determined.
| 6x^5-121x=0 | | 0.5x-6.7=35 | | 5(2x-5)(5x+4)=0 | | 9y=3(1)+27 | | C=9/7(k-27) | | 2-10=15 | | 18=-5v+2(v+6) | | 33+33= | | 22=181/4× | | 5/6x-7=5 | | 5x^2+28=0 | | 4/15=w/37.5 | | .5x+.3y=.36 | | 2*3x^2/3x^3 | | 6x-5=-2x+59 | | 9y=3(0)+27 | | -18=-6w+2(w-3) | | 7x+9-3x=21 | | x+30=2x-50 | | 4/11=6/b | | -10+7n=3(-7n+6) | | 3y+22=2y+18 | | (x-1)(x-4)=14 | | -(x+3)=14.5 | | 35/x=18 | | -34=3(x+5)+4x | | -3p+29=2+3(p+1) | | x-7+5x=18 | | h/20=5/8 | | y=1.50x+3 | | 20x+35y=340 | | 40-2.5x=250-1.5x |