If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3i(2i+4)=0
We multiply parentheses
6i^2+12i=0
a = 6; b = 12; c = 0;
Δ = b2-4ac
Δ = 122-4·6·0
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$i_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$i_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$i_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-12}{2*6}=\frac{-24}{12} =-2 $$i_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+12}{2*6}=\frac{0}{12} =0 $
| 97=3w+5 | | 99=0.1d+98 | | 74=37s | | -5(2x+9)^2-3=602+3 | | 88=d+9 | | 58=95h+39 | | 2(4x-7)^2+5=37-5 | | 6i+1(3+2i)+(5-i)=0 | | 33-y=55 | | -7p^2-16p=-68-8p^2 | | k^2+15k+5=-6 | | n^2+5n-32=4 | | 3(x–2)+5=20 | | 9=1.5d | | n^2+17n+88=7 | | 40=-2a+76 | | 15x^2-20x+4=0 | | x^2+18x-31=-9 | | Y=12x5x | | -63x^2+144x-144=0 | | 49=5m+14 | | (-7(9x^2-18x+18)+(18x-18))=0 | | 32=-5s+42 | | 5(3^(x+1))=85 | | 10=-h+38 | | 7(h-100)=-84 | | (5x15)=(2x5) | | m-47/7=4 | | |4w|+16=-12 | | 16+5n=21 | | 5x(x+1)=-30 | | 7(2p+10=14p+7 |