If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3h^2-225=0
a = 3; b = 0; c = -225;
Δ = b2-4ac
Δ = 02-4·3·(-225)
Δ = 2700
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2700}=\sqrt{900*3}=\sqrt{900}*\sqrt{3}=30\sqrt{3}$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-30\sqrt{3}}{2*3}=\frac{0-30\sqrt{3}}{6} =-\frac{30\sqrt{3}}{6} =-5\sqrt{3} $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+30\sqrt{3}}{2*3}=\frac{0+30\sqrt{3}}{6} =\frac{30\sqrt{3}}{6} =5\sqrt{3} $
| 2y−3=7 | | +9-c=-13 | | 7y-(5y-15)=36 | | x/10+21=15 | | 8=3×r-1 | | 9n2+6n=3 | | 2(x+7)^2+2=74 | | 8h-30=13h | | 2+10y=90 | | 7v=-(8+v) | | 6x²-3=-18x | | 550=315+45l | | -13-40(20x-34)=22x-11(x+25) | | 4(3d+1)=5(6D-1) | | 6(5+3x)=36 | | -¹2x-20=50 | | 5(w+5)=2w+40 | | 2w^2-19w+43-(w+7)^2=0 | | (2,-6)m=1 | | 2.80=9x70/I | | 8x^2+18x-13=0 | | (y/2-1)*2+y*2=46 | | (x+3)^2-(64)=0 | | 7x-39=10+5+5 | | 8x^2-10x-14=11 | | (5x)/3-x=x/6-3/2 | | 5/x+2=4x | | 4(x-9)=4(9+.3333x) | | 21+8x=7(7x+3)+3x | | 4(5v+4)=2(5v+2) | | x/30=0.5 | | 22=30-x |