If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3g^2-2g-5=0
a = 3; b = -2; c = -5;
Δ = b2-4ac
Δ = -22-4·3·(-5)
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-8}{2*3}=\frac{-6}{6} =-1 $$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+8}{2*3}=\frac{10}{6} =1+2/3 $
| 161=u/25+149 | | -15-2r+1=-18 | | 657-t=482 | | 3+2v-7+3v=9-5v | | 180=d(20) | | 10=25r=-18 | | 22=4+6e= | | 60=12ee | | 13=c+160/22 | | 31/3n=22/9 | | 10(g-947)=490 | | 2p2-p-7=0 | | (-30-3x)+2x+20=180 | | 5z-17=13= | | -24-a=-15= | | m÷2=15 | | -6(r+7)-4(r-5)=4r+3 | | h2+7h+15=0 | | 196/t=14 | | 3x+(-5)=16 | | 8x+1=3x+9 | | 5(2+3r)=3(-6–3r) | | 433=p/18+405 | | 3x^{3}-9x^{2}+13x-295=0 | | 9-8x+5x+2=x+1 | | -18=4y+10= | | 24/80=x/60 | | 21=7v-5v | | d2-6d+3=0 | | -15=u+7 | | 6x+2=26= | | 2x÷3+4=-2 |