If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3g^2+51g=0
a = 3; b = 51; c = 0;
Δ = b2-4ac
Δ = 512-4·3·0
Δ = 2601
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2601}=51$$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(51)-51}{2*3}=\frac{-102}{6} =-17 $$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(51)+51}{2*3}=\frac{0}{6} =0 $
| w/2.3-1.4=2.3 | | -2=y/9-7 | | U=6u-7 | | 3z÷8+3=1 | | 32-12n=211 | | y+8=−114 | | 8(v-8)-4v=-32 | | (x+8)=(4x-46) | | X2=81x | | -3y+8(y+6)=28 | | 9x-91=35+3x | | 3x=(88-x) | | x-118=50-7x | | P2=p+42 | | n/712=8 | | 4x=1=9x-1-5x | | 2p+(-16)=-14 | | x-8/11=40 | | 2/3x+3/5x=1 | | 6a+4=-24 | | 3/4x-2/3=1 | | 9/4=x+7 | | v-7.65=9.6 | | 5/6x+-2/3=1 | | 6(j-1)=3(2j+4) | | 5(x=1)=25 | | y+6.86=9.56 | | 36x2=-9x | | u-6.68=4.75 | | 18+w-12=-20 | | 18x-12=-12+18x | | 4(7x-3)=28x-12 |