If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3f^2+7f=0
a = 3; b = 7; c = 0;
Δ = b2-4ac
Δ = 72-4·3·0
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-7}{2*3}=\frac{-14}{6} =-2+1/3 $$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+7}{2*3}=\frac{0}{6} =0 $
| 14=3a-14 | | 7x+2x+27=18- | | -6x-2=-2(3x-1 | | -4x+57=-13×+120 | | (x-6)+(2x-19)=23 | | 2/3n-2/3=n/6-4/3 | | 5x-3(x-2)=-9+4x+11 | | 2/3n-23=n/6+4/3 | | 2(2x5)=6x+4 | | 4,464=10(p+48) | | -5x+5x-3=-3 | | 1/2(4+8x)=10 | | 3/v=12/7 | | u^2-14u+12=1 | | 17/7=y/4 | | 12p=16 | | 6+7u=-15 | | 3(x+-2=-12 | | 3x-3+x+5=18 | | 135+5=2y-50 | | 18=-3/7*v | | -3h-2h+6h+9=10 | | 7-2x=1-5x | | -5.5l+0.56=-1.64 | | 2x-12+x-2=22 | | -2u/9=-8 | | r^2+6r=-11 | | 3x(x+4)=8+2 | | 7)-10=-14y+14y | | 5.5o+0.56=-1.64 | | (2x−1)(3x+2)=0 | | 46=-6p-8 |