3cos(2x)+4sin(2x)=4

Simple and best practice solution for 3cos(2x)+4sin(2x)=4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3cos(2x)+4sin(2x)=4 equation:


Simplifying
3cos(2x) + 4sin(2x) = 4

Remove parenthesis around (2x)
3cos * 2x + 4sin(2x) = 4

Reorder the terms for easier multiplication:
3 * 2cos * x + 4sin(2x) = 4

Multiply 3 * 2
6cos * x + 4sin(2x) = 4

Multiply cos * x
6cosx + 4sin(2x) = 4

Remove parenthesis around (2x)
6cosx + 4ins * 2x = 4

Reorder the terms for easier multiplication:
6cosx + 4 * 2ins * x = 4

Multiply 4 * 2
6cosx + 8ins * x = 4

Multiply ins * x
6cosx + 8insx = 4

Solving
6cosx + 8insx = 4

Solving for variable 'c'.

Move all terms containing c to the left, all other terms to the right.

Add '-8insx' to each side of the equation.
6cosx + 8insx + -8insx = 4 + -8insx

Combine like terms: 8insx + -8insx = 0
6cosx + 0 = 4 + -8insx
6cosx = 4 + -8insx

Divide each side by '6osx'.
c = 0.6666666667o-1s-1x-1 + -1.333333333ino-1

Simplifying
c = 0.6666666667o-1s-1x-1 + -1.333333333ino-1

Reorder the terms:
c = -1.333333333ino-1 + 0.6666666667o-1s-1x-1

See similar equations:

| 8x+3y+7z-4x+3z-4Y= | | 0.4x+3=0.55x+2 | | 3x-2-3x=4x+6 | | 4x^4+8x^3-37x^2+8x+4=0 | | 4x+2x=40 | | 20x+40+30x-10= | | x^9+4x+4=y | | 8x+3y+7z-4x+3z+4y= | | 14x+4+x=14+2(3+x)-3 | | .3t=.1+.8p | | n=n(n-1) | | 2x-7=ax+3-5x | | 5x-(3x+5)=5x-47 | | 2x^2+1-5=0 | | 6+8n=4n+6 | | 2-c=2c+17 | | (2x+1)-4=0 | | x^2-8x-20=-6x+4 | | y^2-16.9y-29.6=0 | | -7x-3=-7x-3 | | (5m^2)+(9m^8)= | | 6+3a-5+4a+3= | | x-20=-x | | 17x-65+8x=20-13+4x | | 7x+26=4x+2 | | 2(x-1)+3x=4x-5(x+2) | | 2x^2-13x+40=0 | | 2v+v=w | | (m^2+m)x=2mx+m^3-1 | | -m^3+m^2x-mx+1=0 | | 1x+x=-14 | | -2(2x-9)+3=6x+5 |

Equations solver categories