If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3c^2+8c-3=0
a = 3; b = 8; c = -3;
Δ = b2-4ac
Δ = 82-4·3·(-3)
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-10}{2*3}=\frac{-18}{6} =-3 $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+10}{2*3}=\frac{2}{6} =1/3 $
| -(7+a)+8(1+8a)=66 | | 4=8x-20 | | 5x-4(x-2)+7(x-1)=-3(x-3)+4(½x+5) | | P(n,3)=210 | | 2(4+7m)+6(-6m-2)=-4 | | n^2-9=- | | 3y−12°+63°=180° | | 120x-600=25x*5x^2 | | 20x+5=9x-2 | | 120x-600=25*5x^2 | | 34=8(5+6r)-6(1-4r) | | 75=3(g+48) | | -10+3n=8 | | -6=g/2-8 | | 5t^-20t-25=0 | | Y=3x-38 | | 0=3(1-a)-(a-5) | | v2+9v+18=0 | | 4r=245 | | 80=5(7-4R)-(r-3) | | ((x-1)(x-1))-25=0 | | -18-8a=-5(a+3) | | -6=g/2−8 | | 3x-5,3=4,9 | | y/2+19=2 | | P=13+8d/11 | | 3+-p=9 | | 2x-6(x+8)=780 | | 8(n+2)+4n=-8+8n | | 16x2+2x−3=0 | | 6y2-17y+12=0 | | 13x+2=7+20 |