If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3c^2-4c-25=0
a = 3; b = -4; c = -25;
Δ = b2-4ac
Δ = -42-4·3·(-25)
Δ = 316
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{316}=\sqrt{4*79}=\sqrt{4}*\sqrt{79}=2\sqrt{79}$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{79}}{2*3}=\frac{4-2\sqrt{79}}{6} $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{79}}{2*3}=\frac{4+2\sqrt{79}}{6} $
| (7n+5)(7n-6)=0 | | 4-(9-8)=6n-24 | | X²-9x-6=0 | | (X-5)(7x-8)=0 | | x=1+2-3x4/5 | | 3^m−3+3^m−3=18 | | 14(x+2)-5=6x+15 | | 2x+8=8–4 | | 3^(x+1)-4*3^(x-1)=45 | | t²-7+6=0 | | -10x-19=19+8x | | -8(m+1)-m-8=-9(m+4)+20 | | 2x+30=44 | | 4m²+4m+1=0 | | 10=5k-3k | | -4=-r+5r | | 5x^2+3x-7+12=x+12 | | 1=3p-2p | | 2(x-3)-4(x=2)=-4(x+1) | | 12x-9=7(3x-3)+3 | | 42=8m+ | | 15=-5z=2z | | 9+7x=15+13x | | 10-20x= | | 7x+7+8x=15 | | 2(4x-3)=3x-5 | | 4(2x+11)-3=5(x+4)+6 | | 98+(97+s)=9s | | x+6/2=10-x+5/3 | | 10x-6=20x+12 | | 3x-2x^=7 | | 3x+11=5(2x+9)-6 |