If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3a^2-6a-34=0
a = 3; b = -6; c = -34;
Δ = b2-4ac
Δ = -62-4·3·(-34)
Δ = 444
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{444}=\sqrt{4*111}=\sqrt{4}*\sqrt{111}=2\sqrt{111}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{111}}{2*3}=\frac{6-2\sqrt{111}}{6} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{111}}{2*3}=\frac{6+2\sqrt{111}}{6} $
| N=28n=2 | | 3.2x=6.5 | | 2x-5*x+5=75 | | 3−8⋅(3+5x)=59 | | 9+2a=17 | | 18+34/x=4×5 | | 280=3n^2-17n | | 10=2z-z^2 | | 4x+9=12x–3 | | -6=h | | c=(2c/3)+1000 | | x+5=-7-12 | | 12-x=45/9 | | 0,4x-1,2=2,8 | | 6-0,5x=1.4 | | 2x+11=7x-34 | | 4x-12-2x=-5 | | -6+x=-4,5 | | -2,4x+0,8=-4 | | 5^1-2x=9 | | 1,5x-6=33 | | x^2+30x=100 | | (15)*(u)3-224=73/6 | | 10^-x=-100 | | (x)^-0.2=0.03917 | | f(3)=2/33-1 | | 10y-31=10y | | 6+6(4t-1)=3+12t | | 2x-5=-x+5 | | 2z-4=6z-12 | | 38=13-25a | | 21x=105=0 |