If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3a^2+14a-49=0
a = 3; b = 14; c = -49;
Δ = b2-4ac
Δ = 142-4·3·(-49)
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-28}{2*3}=\frac{-42}{6} =-7 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+28}{2*3}=\frac{14}{6} =2+1/3 $
| -4x-9=-8x+7 | | 8x2+39x-5=0 | | -9+j=|-8+2| | | n2+6n-16=0 | | 10x+8x=-18+x | | 6n+8=4n+26 | | 5x+4=5x+4=44 | | 3.2x=4.2 | | 5c+4=2c+5 | | 4z/10-4=-1 | | 18=4t-6 | | b-3b-4=0 | | 2x=17-9 | | r+15=-27 | | 4x-26=52 | | 18=4t—6 | | 8x-7=5x-28 | | 7x*3=25 | | 10x+9=2x+33 | | 7x+9=8x-7 | | 14x-2=7x-44 | | 15=9+2t | | 5=9−2x | | -2(x+3)+4x-4= | | 90x+10=70x+210 | | 12x+9=5x-54 | | 5=5x(+6) | | F(t)=1.9+1.4t | | n+9n+18=0 | | x÷11=5 | | 16x+2=8x+26 | | 6x^2=34 |