If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3=-16t^2+160t+2
We move all terms to the left:
3-(-16t^2+160t+2)=0
We get rid of parentheses
16t^2-160t-2+3=0
We add all the numbers together, and all the variables
16t^2-160t+1=0
a = 16; b = -160; c = +1;
Δ = b2-4ac
Δ = -1602-4·16·1
Δ = 25536
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{25536}=\sqrt{64*399}=\sqrt{64}*\sqrt{399}=8\sqrt{399}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-160)-8\sqrt{399}}{2*16}=\frac{160-8\sqrt{399}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-160)+8\sqrt{399}}{2*16}=\frac{160+8\sqrt{399}}{32} $
| 6+1-7x+3x=7-4x | | 0.4x+1.18=-3.1(2-0.1) | | 5.6g+6=2.6g+18 | | 4(x-7)=-6(x-2) | | 100+n=-100 | | 3x+6+3x-4=44 | | 10x–7=2(13+5x) | | 9/x+10=7/9 | | 80=(30x+10) | | 6.9g+8=4.9g+16 | | -m-17=3(2-4m) | | 6.9g+8=4.9g | | 36/x-4=2 | | -(2x+12)=2x+4 | | 7x–6(11–2x)=10 | | 35x-8=97 | | z=((2-12)/26+26)/26 | | 3x+2-5=20+x | | 90+64=8x | | 4(4x-2)+2x-5=-81 | | 4x+12-4=-4x+8 | | -2(3x-14)=46 | | -3u=-16−5u | | 310+25+15h=510 | | 1/2x+5=5-1/8x | | -4(4-2)+2x-5=-81 | | 7(g-12)-3=11 | | 3+12n= | | 4(t-19)+11=-1 | | 7v+14=-7(5v-2) | | 2585+2920+x=3000 | | C=39.96x+0.50x |