If it's not what You are looking for type in the equation solver your own equation and let us solve it.
39=(7x-2)(17x+6)
We move all terms to the left:
39-((7x-2)(17x+6))=0
We multiply parentheses ..
-((+119x^2+42x-34x-12))+39=0
We calculate terms in parentheses: -((+119x^2+42x-34x-12)), so:We get rid of parentheses
(+119x^2+42x-34x-12)
We get rid of parentheses
119x^2+42x-34x-12
We add all the numbers together, and all the variables
119x^2+8x-12
Back to the equation:
-(119x^2+8x-12)
-119x^2-8x+12+39=0
We add all the numbers together, and all the variables
-119x^2-8x+51=0
a = -119; b = -8; c = +51;
Δ = b2-4ac
Δ = -82-4·(-119)·51
Δ = 24340
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{24340}=\sqrt{4*6085}=\sqrt{4}*\sqrt{6085}=2\sqrt{6085}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-2\sqrt{6085}}{2*-119}=\frac{8-2\sqrt{6085}}{-238} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+2\sqrt{6085}}{2*-119}=\frac{8+2\sqrt{6085}}{-238} $
| x/x+9=-5/4 | | -4=-2(r+4) | | 7x-15=10x+6 | | y=8(1−0.15)^ | | 153=h+305 | | w,w4=41 | | -4x-21=15 | | 3/4x+5=1/4×+15 | | -5x+9=84* | | 32(4x–8)=-24 | | -2x+4x=-12 | | 6・n=54 | | -6(p+8)=36 | | 5+6n=29 | | F(-4)=2x-13 | | -x/5=2(x+1) | | 14(-7x+12)=-4 | | 15/x-2=3.5 | | 3^(2x+1)-2.9^(x+1)=1/3 | | x-60=-38 | | 2x/7-x=-6 | | a+(a+50)+(a-20)=180 | | –5(-x–10)=40 | | .1-x=0.01 | | M-2=8-3m | | 9x+3-4x=13* | | -20=9(x–8) | | 3-6r+6=-3 | | 5x=55.5 | | –(5x+12)=8 | | 135=2.5x | | c-21=-10 |