If it's not what You are looking for type in the equation solver your own equation and let us solve it.
39-k2+6k=0
We add all the numbers together, and all the variables
-1k^2+6k+39=0
a = -1; b = 6; c = +39;
Δ = b2-4ac
Δ = 62-4·(-1)·39
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-8\sqrt{3}}{2*-1}=\frac{-6-8\sqrt{3}}{-2} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+8\sqrt{3}}{2*-1}=\frac{-6+8\sqrt{3}}{-2} $
| 174+3x=360 | | b/12-8+2=-12 | | -4x+7=-12 | | 5(y+(2/5)=-13 | | 226+2x=360 | | 5(5n+6)=105 | | 2c+c+5=43.97, | | 85+x=185 | | 3x+222=360 | | -3x-6=-14 | | x/7+35-12=28 | | 6(4v+8)=312 | | 11x-6=5x-30 | | 2(x+1)+6=4(2-3x)-4 | | 2c+c+5=43.97 | | -2(z-6)=4 | | 16=x–14 | | 2(4x+20)=24 | | 4(w-8)=-16 | | 15x+6=6x-57 | | 11x+10=9x+2 | | 10x+7=3x-49 | | 8k-7k-1=0 | | -2(y-9)=8 | | 3^(3x-6)=33 | | 3x-4(x-5)=-16 | | 5r=1.50 | | 2x+204=360 | | 1/4+x=2/3 | | 5x-17x-12=0 | | 17x-8=9x+8 | | (3x+1)/5=x+3 |