If it's not what You are looking for type in the equation solver your own equation and let us solve it.
39*39=x*x*36*36
We move all terms to the left:
39*39-(x*x*36*36)=0
We add all the numbers together, and all the variables
-(+x*x*36*36)+39*39=0
We add all the numbers together, and all the variables
-(+x*x*36*36)+1521=0
We get rid of parentheses
-x*x*36*36+1521=0
Wy multiply elements
-1296x^2*3+1521=0
Wy multiply elements
-3888x^2+1521=0
a = -3888; b = 0; c = +1521;
Δ = b2-4ac
Δ = 02-4·(-3888)·1521
Δ = 23654592
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{23654592}=\sqrt{7884864*3}=\sqrt{7884864}*\sqrt{3}=2808\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2808\sqrt{3}}{2*-3888}=\frac{0-2808\sqrt{3}}{-7776} =-\frac{2808\sqrt{3}}{-7776} =-\frac{13\sqrt{3}}{-36} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2808\sqrt{3}}{2*-3888}=\frac{0+2808\sqrt{3}}{-7776} =\frac{2808\sqrt{3}}{-7776} =\frac{13\sqrt{3}}{-36} $
| 3x+5=4x-29 | | 252-u=25 | | -x+193=77 | | 6=-2b | | 194=-w+5 | | 9x^2-18x-157=0 | | 4-2(w-4)2=-124 | | 3x/5-x=x/10-1.5 | | -7(x-19)=-133 | | x=1368800/109 | | 109x=1368800 | | 4x+5=-4(2x+12) | | 3.25g=13 | | 58=4x+19 | | 6/7e=2/49 | | 9+5/n=7 | | 9x+8=8x-8 | | X+12=17x | | 8/n-1=3 | | 4x-5=4x-6 | | 3/8x=39 | | n*3+6=18 | | 5w+50=120 | | 5-n+10=12 | | X=4x4 | | X^2-2-x+4=0 | | 5.39*2.5=x | | 15/7x=3 | | 4=95-y | | (4x)+(7x-2)+(5x-10)=180 | | (4+x)(x+5)=90 | | 19=-t+7 |